K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

T ko biết

14 tháng 1 2021

a) Đặt d = (4n + 3, 2n + 3).

Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.

Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3

\(\Leftrightarrow n⋮3̸\).

Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.

19 tháng 7 2017

11 tháng 4 2018

b, Ta có: a.b=ƯCLN(a,b) . BCNN(a,b)=2400

                   =ƯCLN(a,b) . 120 = 2400

         => ƯCLN(a,b)= 2400 : 120=20

  Đặt a=20n ; b=20m ; (n,m)=1

Ta có: a.b=20n . 20m=2400

           => n.m=2400:(20.20)= 6

Lập bảng: 

   n

  1

6

2

3

   m

 6

1

3

2

   a

20

120

40

60

   b

120

20

60

40

5 tháng 12 2015

b,

 Giả sử 18n+3 và 21n+7 cùng chia hết cho số nguyên tố d

Ta có: 6(21n+7)−7(18n+3)chia het cho d \(\Rightarrow\)21chia het d\(\Rightarrow\)\(\in\){3;7}.

Hiển nhiên d \(\ne\)3 vì 21n+7 không chia hết cho 3.

Để (18n+3,21n+7)=1 thì d\(\ne\)7 tức là 18n+3 không chia hết cho 7 nếu 18n+3−21 không chia hết cho 7

\(\Leftrightarrow\)18(n−1) không chia hết cho 7

\(\Leftrightarrow\)n−1 không chia hết cho 7

\(\Leftrightarrow\)n\(\ne\)7k+1(k\(\in\)n)

Kết luận: Với n\(\ne\)7k+1(k\(\in\)N thì 18n+3 và 21n+7 là hai số nguyên tố cùng nhau.

a,

ko bt **** nhe con cau a ban hoi ng khac thu xem

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 1:

a. Gọi d là ƯCLN(n+2, n+3). Khi đó:

$n+2\vdots d; n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.

b.

Gọi $d=ƯCLN(2n+1, 9n+4)$

$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$

$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 2:

a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.

Khi đó: $a+b=24x+24y=192$

$\Rightarrow 24(x+y)=192$

$\Rightarrow x+y=8$

Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$

$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$

20 tháng 10 2015

1) Coi a< b

ƯCLN (a;b) = 56 . Đặt a = 56m; b = 56n (m; n nguyên tố cùng nhau và m < n)

a + b = 224 => 56m + 56n = 224 => m + n = 4 => m = 1; n =3 => a = 56 và b = 168

Vậy...

2) Gọi d = ƯCLN(2n + 2; 2n+ 3) 

=> 2n + 1 chia hết cho d; 2n +3  chia hết cho d

=> 2n + 3 - (2n + 1) chia hết cho d => 2 chia hết cho d => d = 1 hoặc d = 2

Mà 2n + 1 lẻ nên 2n + 1 không chia hết cho 2 => d = 1

Vậy...

3) Áp dụng công thức ƯCLN(a;b) . BCNN(a;b) = a.b => ƯCLN(a;b) = 2400 : 120 = 20

Đặt a = 20m; b= 20n( m; n nguyên tố cùng nhau; coi m< n)

a.b = 20m.20n = 400mn = 2400 => m.n = 6 = 1.6 = 2.3

+) m = 1; n = 6 => a = 20; b = 120

+) m = 2; n = 3 => a = 40; b = 60

Vây,...

4) a chia hết cho b nên BCNN(a;b) = a = 18

=> b \(\in\)Ư(18) = {1;2;3;6;9;18}

vậy,,,

12 tháng 11 2016

khó quá không làm được