K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

a) Để \(f\left(x\right)=3\)

\(\Leftrightarrow\frac{2x+1}{2x+3}=3\)

\(\Leftrightarrow3.\left(2x+3\right)=2x+1\)

\(\Leftrightarrow6x+9=2x+1\)

\(\Leftrightarrow6x-2x=1-9\)

\(\Leftrightarrow4x=-8\)

\(\Leftrightarrow x=-2\)

10 tháng 5 2019

Để f(x) nguyên

 \(\Leftrightarrow2x+1⋮2x+3\)

\(\Leftrightarrow2x+3-2⋮2x+3\)

mà \(2x+3⋮2x+3\)

\(\Rightarrow2⋮2x+3\)

\(\Rightarrow2x+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Lập bảng rồi tìm x nguyên nhé 

                        

30 tháng 8 2021

\(\dfrac{2x^3+x^2+2x+2}{2x+1}\left(đk:x\ne-\dfrac{1}{2}\right)=\dfrac{\left(2x+1\right)\left(x^2+1\right)}{2x+1}+\dfrac{1}{2x+1}=x^2+1+\dfrac{1}{2x+1}\)

Do x nguyên nên để biểu thức trên có giá trị nguyên thì :

\(1⋮2x+1\Rightarrow2x+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow x\in\left\{0;-1\right\}\)

\(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

\(=\dfrac{2x^3+x^2+2x+1+1}{2x+1}\)

\(=x^2+1+\dfrac{1}{2x+1}\)

Để đó là số nguyên thì \(1⋮2x+1\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2x\in\left\{0;-2\right\}\)

hay \(x\in\left\{0;-1\right\}\)

13 tháng 1 2022

\(A=\dfrac{2x+2}{x+3}.\left(x\ne-3\right).\)

\(A=2+\dfrac{-4}{x+3}.\)

Để \(A\in Z.\Leftrightarrow2+\dfrac{-4}{x+3}\in Z.\Leftrightarrow x+3\inƯ\left(-4\right)=\left\{1;-1;2;-2;4;-4\right\}.\)

\(\Rightarrow x\in\left\{-2;-4;-1;-5;1;-7\right\}.\)

1 tháng 7 2018

\(\frac{2x+3}{x-5}\)\(=\frac{2\left(x-5\right)+13}{x-5}\)

                     \(=\frac{2\left(x-5\right)}{x-5}+\frac{13}{x-5}\)

                     \(=2+\frac{13}{x-5}\)

để biểu thức trên có giá trị nguyên <=> \(\frac{13}{x-5}\)thuộc Z

mà  \(x\)thuộc Z => \(x-5\)thuộc ước của \(13\)

=> \(x-5\)thuộc \(\left(1;-1;13;-13\right)\)

=>\(x\)thuộc \(\left(6;4;18;-8\right)\)

vậy ....

\(\frac{x^3-2x^2+4}{x-2}\) \(=\frac{x^2\left(x-2\right)+4}{x-2}\)

                                 \(=x^2+\frac{4}{x-2}\)

để biểu thức trên đạt giá trị nguyên <=> \(\frac{4}{x-2}\) thuộc giá trị nguyên

  mà \(x\) là số nguyên => \(x-2\)thuộc ước của \(4\)

=> \(x-2\) thuộc \(\left(1;-1;2;-2;4;-4\right)\)

=>   \(x\)thuộc \(\left(3;1;4;0;6;-2\right)\)

vậy...

20 tháng 12 2020

ĐKXĐ: \(x\ne1\)

Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)

\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)

\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)

\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)

\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)

Để B nguyên thì \(3⋮\left(x-1\right)^2\)

\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)

mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ

nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)

\(\Leftrightarrow x-1\in\left\{1;9\right\}\)

hay \(x\in\left\{2;10\right\}\) (nhận)

Vậy: \(x\in\left\{2;10\right\}\)