K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

Gọi S là tập hợp các giá trị của m để đường thẳng y= (m-2) +3 cắt hai trục tọa độ tạo thành 1 tam giác AOB vuông cân. Tính tổng các phần tử của S:

A. 1                     B.2                     C.3                     D.4

28 tháng 5 2021

C

31 tháng 12 2021

Chọn C

20 tháng 11 2017

Mặt cầu (S) có tâm I (1;0;-2) và bán kính R=2.

Đường thẳng d đi qua điểm N (2; 0; m-1) và có véc tơ chỉ phương 

Điều kiện để d cắt (S) tại hai điểm phân biệt là d (I; (d))<R

Khi đó, tiếp diện của (S) tại A và B vuông góc với IA và IB nên góc giữa chúng là góc (IA;IB).

Vậy T= {-3;0}. Tổng các phần tử của tập hợp T bằng -3.

20 tháng 4 2017

Chọn đáp án C

STUDY TIP

Ta lập phương trình đường thẳng đi qua hai tiếp điểm của hai tiếp tuyến với (C) bằng phương pháp gián tiếp

 

 

 

 

 

 

9 tháng 2 2021

- Xét phương trình hoành độ giao điểm : \(mx-4=-mx-4\)

\(\Leftrightarrow2mx=0\)

\(\Leftrightarrow x=0\)

\(\Rightarrow y=-4\)

=> Tọa độ điểm ( 0; - 4 )

- d1 cắt trục hoành tại điểm : \(\left(\dfrac{4}{m};0\right)\)

- d2 cắt trục hoành tại điểm : \(\left(-\dfrac{4}{m};0\right)\)

=> Tam giác đó là tam giác cân .

\(\Rightarrow S=\dfrac{1}{2}.\left|-4\right|.\left|\dfrac{8}{m}\right|=\left|\dfrac{16}{m}\right|>8\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{16}{m}< -8\\\dfrac{16}{m}>8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\in\left(-2;0\right)\\m\in\left(0;2\right)\end{matrix}\right.\)

Vậy \(S=\left\{1\right\}\)

6 tháng 6 2017