cho a=\(\sqrt{72+\sqrt{72+\sqrt{72+...+\sqrt{72}}}}\),100 dấu căn kí hiệu [a] là số nguyên lớn nhất không vượt quá a. khi đó [a] bằng
A/7
B/8
C/9
D/10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(a=5+2\sqrt{6}\).ta sẽ chứng minh với dạng tổng quát \(\left[a^n\right]\)là 1 số tự nhiên lẻ.
ta có: \(a^n=\left(5+2\sqrt{6}\right)^n=x+y\sqrt{6}\)(x,y là các số tự nhiên) (*)
đặt \(b=5-2\sqrt{6}\Rightarrow b^n=x-y\sqrt{6}\)
\(\Rightarrow a^n+b^n=2x\)
mà \(0< b=5-2\sqrt{6}< 1\)
\(\Rightarrow0< b^n< 1\)
\(\Rightarrow2x-1< a^n=2x-b^n< 2x\)
nên \(\left[a^n\right]=2x-1\)lẻ vì x nguyên.
p/s:(*) : thử \(\left(5+2\sqrt{6}\right)^2,\left(5+2\sqrt{6}\right)^3\)đều có dạng \(A+B\sqrt{6}\)
\(=5\sqrt{2}-\dfrac{3}{2}\cdot4\sqrt{2}-\dfrac{1}{3}\cdot6\sqrt{2}+8=-3\sqrt{2}+8\)
\(=3\sqrt{2}-3\sqrt{2}+2\sqrt{2}+6\sqrt{2}=8\sqrt{2}\)
Ta có :
\(a^2=72+\sqrt{72+\sqrt{72+\sqrt{72+.......}}}\)
\(\Leftrightarrow a^2=72+a\Leftrightarrow a^2-a-72=0\Leftrightarrow\left(a-9\right)\left(a+8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=9\\a=-8\end{cases}}\)
Mà a > 0 nên a = 9 \(\Rightarrow\left[a\right]=9\)