So sanh A va b
A=1+2+22+23+...+22010
B=22011-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2013/2018 < 2012/2018
b, 2013/2008 < 2008/2003
c,24/47 > 13/27
d,37/23 < 42/22
e 1/2 > 1/2017
g, 12/13 > 6/7
\(a,\Rightarrow2A=2+2^2+...+2^{2011}\)
\(\Rightarrow2A-A=2+2^2+...+2^{2011}-2^0-2-..-2^{2010}\)
\(\Rightarrow A=2^{2011}-1=B\)
\(b,A=2019.2011=\left(2010-1\right)\left(2010+1\right)=\left(2010-1\right).2010+\left(2010-1\right)=2010^2-2010+2010-1=2010^2-1< 2010^2=B\)
\(a,\Rightarrow2A=2^1+2^2+...+2^{2011}\\ \Rightarrow2A-A=A=2^{2011}-2^0=2^{2011}-1=B\)
\(b,A=\left(2010-1\right)\left(2010+1\right)=2010^2+2010-2010-1=2010^2-1< 2010^2=B\)
câu a ta so sánh số đối của 2 phân số này.nếu ps nào có giá trị tuyệt đối lớn hơn thì nhỏ hơn.
câu b ta nhân cả A và B với 2009 rồi so sánh 2009A với 2009B.ta được A>B
\(A=1+2+2^2+2^3+...+2^{2010}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2010}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2011}\)
\(A=2A-A=\left(2+2^2+2^3+2^4+..+2^{2011}\right)-\left(1+2+2^2+2^3+..+2^{2010}\right)\)
\(A=2^{2011}-1\)
Vì \(A=2^{2011}-1;B=2^{2011}-1\Rightarrow A=B\)
A= 1+2+22+23+...+22010
2A=2 (2+22+23+...+22010)
2A=22+23+24+...+22011
2A-A= 22011-1
A= 22011-1
Ta có: 22011-1=22011-1
\(\Rightarrow\)...=...Còn lại