K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)

\(\Leftrightarrow x\in\left\{-2;12\right\}\)

b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)

14 tháng 8 2021

a) \(x^2-x+x=4\)

\(x^2=4\)

\(x=\pm2\)

b) \(3x\left(x-5\right)-2\left(x-5\right)=0\)

\(\left(x-5\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\end{matrix}\right.\)

c) Ta có: \(a+b+c=5-3-2=0\)

\(\left[{}\begin{matrix}x=1\\x=\dfrac{c}{a}=\dfrac{-2}{5}\end{matrix}\right.\)

d) Đặt \(x^2=t\left(t\ge0\right)\) . Lúc đó phương trình trở thành :

\(t^2-11t+18=0\)

\(\left[{}\begin{matrix}t=9\left(tmđk\right)\\t=2\left(tmđk\right)\end{matrix}\right.\)

\(t=9\rightarrow x^2=9\rightarrow x=\pm3\)

\(t=2\rightarrow x^2=2\rightarrow x=\pm\sqrt{2}\)

 

 

4 tháng 9 2021

a)x.(5-2x)-2x.(1-x)=15
   x [ 5 - 2x -2.(1-x) ] = 15
   x ( 5 - 2x -2 + 2x ) =15
   x . 3 =15
   x = 5
b)(3x+2)2+(1+3x).(1-3x)=2
   9x2+12x+4+1-9x2=2
   12x + 5 = 2
    12x = -3
        x = -1/4

4 tháng 9 2021

a)\(\Leftrightarrow\)\(5x-2x^2-2x+2x^2=15\)

\(\Leftrightarrow\)\(3x=15\)

\(\Leftrightarrow\)\(x=5\)

b)\(\Leftrightarrow\)\(9x^2+12x+4+1-9x^2-2=0\)

\(\Leftrightarrow\)\(12x+3=0\)

\(\Leftrightarrow\)\(x=-0,25\)

a: Ta có: \(\left(3x-2\right)\left(2x-1\right)-\left(6x^2-3x\right)=0\)

\(\Leftrightarrow2x-1=0\)

hay \(x=\dfrac{1}{2}\)

b: Ta có: \(x^3-\left(x+1\right)\left(x^2-x+1\right)=x\)

\(\Leftrightarrow x^3-x^3-1=x\)

hay x=-1

c: Ta có: \(56x^4+7x=0\)

\(\Leftrightarrow7x\left(8x^3+1\right)=0\)

\(\Leftrightarrow x\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d: Ta có: \(x^2-5x-24=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

NV
20 tháng 7 2021

a.

\(\Leftrightarrow\left(3x-1\right)^3=\left(-\dfrac{1}{2}\right)^3\)

\(\Leftrightarrow3x-1=-\dfrac{1}{2}\)

\(\Leftrightarrow3x=\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{1}{6}\)

b.

\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)-x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x-1-x\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\\end{matrix}\right.\)

c.

\(\Leftrightarrow3x\left(5x-2\right)-2\left(5x-2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)

a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Vậy: S={1}

b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)

\(\Leftrightarrow6x=-20\)

hay \(x=-\dfrac{10}{3}\)

c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)

\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)

\(\Leftrightarrow17x=17\)

hay x=1

23 tháng 10 2021

\(a,\Leftrightarrow\left(2x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow x^3-27-x^3+4x=1\\ \Leftrightarrow4x=28\Leftrightarrow x=7\\ c,\Leftrightarrow4x^2-4x-8=0\\ \Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow2x^2+6x+x+3=0\\ \Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)