1 người dự định đi từ A đến B cách nhau 96km trong một thời gian định trước. sau khi đi được nửa quãng đường người đó dừng lại nghỉ 2/13 giờ do đó để đến B đúng hẹn người đó đã tăng vận tốc thêm 2km/h trên quãng đường còn lại tính vận tốc ban đầu và thời gian xe lăn bánh trên đường
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc ban đầu là x
Thời gian dự kiến là 36/x
Thời gian thực tế là 18/x+3/10+18/(x+2)
Theo đề, ta có:
\(\dfrac{36}{x}=\dfrac{18}{x}+\dfrac{3}{10}+\dfrac{18}{x+2}\)
=>\(\dfrac{18}{x}-\dfrac{18}{x+2}=\dfrac{3}{10}\)
=>\(\dfrac{18x+36-18x}{x\left(x+2\right)}=\dfrac{3}{10}\)
=>12/x(x+2)=1/10
=>x(x+2)=120
=>x^2+2x-120=0
=>(x+12)(x-10)=0
=>x=10
Thời gian xe đi trên đường là:
18/10+3/10+18/12=3,6(h)
Gọi vận tốc của người đi xe đạp lúc đầu là x(x>0)
Thời gian dự định đi hết quãng đường AB là : \(\frac{30}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường đầu là : \(\frac{15}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường sau là : \(\frac{15}{x+2}\left(h\right)\)
15 phút=\(\frac{1}{4}\)h Ta có:
\(\frac{30}{x}=\frac{15}{x}+\frac{1}{4}+\frac{15}{x+2}\)
\(\Leftrightarrow\frac{15}{x}-\frac{15}{x+2}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}=\frac{1}{60}\)
\(\Leftrightarrow\frac{2}{x\left(x+2\right)}=\frac{1}{60}\)
\(\Leftrightarrow x\left(x+2\right)=120\)
\(\Leftrightarrow\orbr{\begin{cases}x=-12\\x=10\end{cases}\Rightarrow x=10}\)
Gọi vận tốc dự định đi của người đó là x (km/h) (x > 0)
Thời gian dự định đi của người đó là 36/x (h)
Thời gian người đó đi nửa quãng đường đầu là 18/x (h)
Nửa quãng đường sau người đó đi với vận tốc là x + 2 (km/h) và thời gian người đó đi là 18/(x+2) (h)
Vì nghỉ lại 30 phút nên thời gian đi từ lúc xuất phát đến khi tới B là 18 x + 1 2 + 18 x + 2
Do người đó đến B chậm hơn dự kiến 12 phút = 1/5h nên ta có phương trình:
Vậy vận tốc của người đi xe đạp trên đoạn đường cuối của đoạn AB là 12 km/h
Đáp án: A
Đáp án A
Gọi vận tốc ban đầu của người đó là x (km/h) (x > 0).
Thời giạn dự định người đó đi hết quãng đường là 90/x (h).
Quãng đường người đó đi được sau 1 giờ là x (km).
Quãng đường còn lại người đó phải tăng tốc là 90 – x (km).
Vận tốc của người đó sau khi tăng tốc là x + 4 (km/h).
Thời gian người đó đi hết quãng đường còn lại là (h).
Theo đề bài ta có phương trình:
Vậy vận tốc lúc đầu của người đó là 36 km/h.
Gọi x(km/h) là vận tốc ban đầu của người đó(Điều kiện: x>0)
Thời gian dự định của người đó là: \(\dfrac{50}{x}\)(h)
Sau 2h30', người đó đi được: 2,5x(km)
Thời gian thực tế của người đó là: \(2+\dfrac{1}{2}+\dfrac{50-2.5x}{x+2}=\dfrac{5}{2}+\dfrac{50-2.5x}{x+2}\)
Theo đề, ta có phương trình:
\(\dfrac{5}{2}+\dfrac{50-2.5x}{x+2}=\dfrac{50}{x}\)
\(\Leftrightarrow\dfrac{5x\left(x+2\right)}{2x\left(x+2\right)}+\dfrac{2x\left(50-2.5x\right)}{2x\left(x+2\right)}=\dfrac{100\left(x+2\right)}{2x\left(x+2\right)}\)
Suy ra: \(5x^2+10x+100x-5x^2=100x+200\)
\(\Leftrightarrow10x=200\)
hay x=20(thỏa ĐK)
Vậy: vận tốc ban đầu là 20km/h
Gọi vận tốc ban đầu là x>0 (km/h)
Thời gian dự định: \(\dfrac{50}{x}\) giờ
Quãng đường đi trong 2h đầu: \(2x\) (km)
Quãng đường còn lại: \(50-2x\)
Vận tốc trên đoạn đường còn lại: \(x+2\)
Thời gian đi hết đoạn đường còn lại: \(\dfrac{50-2x}{x+2}\)
Theo bài ra ta có pt:
\(\dfrac{50}{x}=\dfrac{5}{2}+\dfrac{50-2x}{x+2}\)
\(\Leftrightarrow x^2+10x-200=0\Rightarrow\left[{}\begin{matrix}x=10\\x=-20\left(loại\right)\end{matrix}\right.\)
Gọi vận tốc ban đầu của người đó là a(km/h) \((a>0)\)
Theo đề,ta có: \(\dfrac{48}{a}+\dfrac{2}{13}+\dfrac{48}{a+2}=\dfrac{96}{a}\)
\(\Leftrightarrow\dfrac{48}{a}=\dfrac{2a+628}{13\left(a+2\right)}\Leftrightarrow624a+1248=2a^2+628a\)
\(\Leftrightarrow2a^2+4a-1248=0\Rightarrow a^2+2a-624=0\)
\(\Leftrightarrow\left(a+26\right)\left(a-24\right)=0\) mà \((a>0)\Rightarrow a=24\)
\(\Rightarrow\) thời gian lăn bánh là \(\dfrac{96}{24}-\dfrac{2}{13}=\dfrac{50}{13}\left(h\right)\)