K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Áp dụng bất đẳng thức AM - GM ta có :

\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)

\(2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\sqrt{\frac{1}{16xy}.xy}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

21 tháng 12 2019

Đáp án C

Ta có

Khi đó

Vậy giá trị nhỏ nhất của biểu thức P là  3 + 2 2

24 tháng 4 2019

4 tháng 5 2018

2 tháng 6 2019

27 tháng 5 2017

NV
21 tháng 4 2021

\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)

\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)

17 tháng 1 2018

24 tháng 11 2018

14 tháng 12 2017

Đáp án A

Ta có

Khi đó

21 tháng 2 2019

Đáp án B

Đặt log 9 x = log 12 y = log 16 x + y = t ⇔ x = 9 t y = 12 t  và x + y = 16 t  

Suy ra  9 t + 12 t = 16 t ⇔ 3 t 2 + 3 t .4 t − 4 t 2 = 0 ⇔ 3 4 t 2 + 3 4 t − 1 = 0 ⇔ 3 4 t = − 1 + 5 2

Vậy  x y = 9 t 12 t = 3 4 t = − 1 + 5 2 = − a + b 2 ⇔ a = 1 b = 5 ⇒ P = a b = 5