K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Ta thấy n2 là số chính phương 

=> n2 chia cho 4 dư 0 hoặc 1

Mà 2006 chia cho 4 dư 2

=> n2 + 2006 chia cho 4 dư 2 hoặc 3

=> n2 + 2006 không là số chính phương

=> Không có số tự nhiên n thỏa mãn đề bài.

30 tháng 12 2017

cảm ơn nha

27 tháng 3 2016

Giả sử n2+2016=m2

2016=m2-n2

2016=(m-n)(m+n)

Vì 2016 là 1 số chẵn nên trong tích (m-n)(m+n) phải có ít nhất 1 số chẵn (1)

Mặt khác (m+n)-(m-n)=2n nên cả 2 số phải cùng lẻ hoặc cùng chẵn (2)

Từ (1) và (2) => Cả 2 thừa số đều là chẵn

Đặt m+n=2h

m-n=2t

Ta có 2h.2t=2016

4.(h.t)=2016

=> 2016 phải chia hết cho 4

Nhưng 2016 ko chia hết cho 4 nên ko có số nào thỏa mãn đề bài

Ủng hộ mk nha

27 tháng 3 2016

chtt

k

nha

.................

8 tháng 12 2015

CHTT nha bạn ! 

8 tháng 12 2015

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

13 tháng 2 2016

Giả sử n2+2006=m2(m,n thuộc Z)

=>n2-m2=2006<=>(n+m).(n-m)=2006

Gọi n-m=a;n+m=b(a,b thuộc Z)

Vì tích a và b bằng 2006 là một số chẵn ,suy ra trong a và b có ít nhất một số chẵn(1)

Mặt khác ta có:a+b=(n-m)+(n+m)=2n là một số chẵn ,suy ra a và b cùng chẵn hoặc cùng lẻ(2)

Từ (1) và (2) suy ra a  và b đều là số chẵn

Suy ra a=2k,b=2l(k,l thuộc Z)

Theo như trên ta có:a.b=2006 hay2k.2l=2006 hay 4.k.l=2006

Vì k,l là số nguyên nên 2006 phải chia hết cho 4(vô lý vì 2006 không chia hết cho 4)

Vậy không tồn tại n thỏa mãn bài toán

14 tháng 2 2016

câu hỏi tương tự nha bạn

14 tháng 2 2016

bai toan nay kho @gmail.com

26 tháng 5 2018

a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)

\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )

Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2

=> a + n và a - n có cùng tính chẵn lẻ

TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )

TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1 

Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương

b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))

TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

Vậy \(n^2+2006\)là hợp số

3 tháng 5 2016

hahaha. đây mà là toán lớp 1 à? đùa dai quá!

đây mà là toán lớp 1 . vớ vẩn

a) Đặt n2+2006=a2(a∈Z)n2+2006=a2(a∈Z)

⇒2006=a2−n2=(a−n)(a+n)(1)⇒2006=a2−n2=(a−n)(a+n)(1)

Mà (a+n)-(a-n)=2n⋮⋮2

=> a+n và a-n cg tính chẵn, lẻ

TH1: a+n; a-n cg lẻ => (a+n)(a-n) lẻ trái với (1)

TH2: a+n; a-n cg chẵn => (a+n)(a-n) chia hết cho 4, trái với (1)

Vậy không tìm đc n để n2+2006n2+2006 là số chính phương

21 tháng 2 2020

cam on nha