1. tìm n thuộc N để :
a) 4n+5 chia hết cho n
b)n+5chia hết cho n +1
2.chứng minh A=2+22+....+22004 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Câu a. Đề là cm chia hết cho 2. Tin mình đi có thể sách bạn bị con muỗi đậu vào thêm số 1. Cm nếu n chẵn hiển nhiên. Nếu n lẻ thì (n+13) chẵn chia hét cho =đp cm
b)7^4=49^2 tận cùng là 1 =>7^4)^n tân cùng 1 =>7^(4n)-1 tân cùng là 0 vậy chia hết cho 5
a)(5n+7)(4n+6)
nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)
Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2 (1)
nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2 (2)
Từ (1) (2) =>(5n+7).(4n+6) luôn chia hết cho 2
=>đpcm
2)
A = 2 + 22 + ... + 22004
A = ( 2 + 22 + 23 ) + ... + ( 22002 + 22003 + 22004 )
A = 2 . ( 1 + 2 + 22 ) + ... + 22002 . ( 1 + 2 + 22 )
A = 2 . 7 + ... + 22002 . 7
A = 7 . (2 + ... + 22002 ) chia hết cho 7
Bai 1:
a, 4n+5 chia hết n
Mà 4n chia hết n
=> 5 chia hết n
=> n thuộc Ư(5)={-5,-1,1,5}
=> n = -5,-1,1,5
b, n+5 chia hết n+1
=> n+1+4 chia hết n+1
Mà n+1 chia hết n+1
=> 4 chia hết n+1
=> n+1 thuộc Ư(4)={-4,-2,-1,1,2,4}
=> n=-5,-3,-2,0,1,3