K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

Vì |x-20| và |y+x-1| đều >=0 => |x-20|+|y+x-1| >=0

Mà |x-20| + |y+x-1| < = 0 => |x-20| + |y+x-1| = 0 khi x-20 = 0 và y+x-1 = 0

<=> x=20 ; y = -19

Vậy ...........

k mk nha

27 tháng 12 2017

Ta có:\(\left|x-20\right|+\left|y+x-1\right|\)< hoặc = 0

mà giá trị tuyệt đối của một số lớn hơn hoặc bằng 0

=> \(\left|x-20\right|+\left|y+x-1\right|=0\)

Vậy \(x-20=0\)

       \(20+0=x\)

                   \(x=20\)     

và \(y+x-1=0\)thay x = 20, ta có:

    \(y+20-1=0\)

    \(y=0-20+1\)

    \(y=-20+1\)

    \(y=-19\)

Vậy \(x=20;y=-19\)

15 tháng 12 2016

no biet

13 tháng 7 2021

b, 

ta có: x-12/3 + y+8/23 + z+190/27 luôn lớn hơn 0 nên không thể nhỏ hơn 0

Để: |x-12/3| + |y+8/23| + |z+190/27| > 0

=> (+) x-12/3 = 0

=> x= 12/3

(+) y+8/23 = 0

=> y = -8/23

(+) z+190/27 = 0

=> z = -190/27

Vậy x = 12/3; y = -8/23; z = -190/27

k giúp mình

làm ơn

13 tháng 7 2021

câu a sai đề thì phải, bạn chữa lại rồi mình làm

1 tháng 8 2017

a,

\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)

d,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)

1 tháng 8 2017

Bạn mới hỏi ở dưới rồi :v

30 tháng 12 2017

 Vì |x-1| và |x-y+5| lớn hơn hoặc bằng 0 nên |x-1|+|x-y+5|=0 

  Suy ra x-1=0 => x=0+1 => x=1

Với x=1 ta có : 1-y+5=0 => 1-y=0-5 => 1-y=-5 => y=1--5 => y=-6

          Vậy x=1 và y=-6

30 tháng 12 2017

ta có |x-1|+|x-y+5|=0 vì nếu |x-1|+|x-y+5|<0 thì x,y thuộc tập hợp rỗng

suy ra |x-1|=0

           |x-y+5|=0

suy ra x-1=0 và x-y+5=0

suy ra x=0+1=1

suy ra 1-y+5=0

bạn sẽ tự tìm y chứ