Cho hệ phương trình:\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\)
a)Giải hệ phương trình khi m=\(\sqrt{2}\)
b)Giải và biện luận hệ theo m
c)Xác định các giá trị nguyên của m để hệ có nghiệm duy nhất (x,y) sao cho x>0,y>0
d)Với các giá trị nguyên nào của m thì hệ có nghiệm (x,y) là các số nguyên dương
với m = 0 \Rightarrow ∫y=104x=4∫x=4y=104
với m khác 0 \Rightarrow ∫x+my=4mx+4y=10−m∫mx+4y=10−mx+my=4
\Leftrightarrow ∫y=5m+2x=−m+8m+2∫x=−m+8m+2y=5m+2
b. vì x >0 , y>0 \Rightarrow ∫y=5m+2>0x=−m+8m+2>0∫x=−m+8m+2>0y=5m+2>0
\Rightarrow ∫−m+8>0m+2>0∫m+2>0−m+8>0
\Rightarrow ∫m<8m>−2∫m>−2m<8
\Rightarrow -2<m<8
\Rightarrow m ={ -1;0;1;2;3;4;5;6;7}
c, y = −m+8m+2−m+8m+2 = -1 + 10m+210m+2
hệ có nghiệm x.y nguyên dương \Leftrightarrow m+2 là ước nguyên dương của 5
\Leftrightarrow m+2 = 1 ; 5
m+2 = 1 \Rightarrow m = -1
m+2 = 5 \Rightarrow m =3
ở câu c sao y lại bằng như vậy