Cho đường tròn tâm,đường kính AB.Cho điểmC khác A và B.Các tiếp tuyến tại C và B cắt nhau ở D
a)Chứng minh rằng:CA vuông góc với CB và OD vuông góc với CB
b)Tiếp tuyến tại A của đường tròn tâm O cắt BC tại E,kẻ CH vuông góc với AB.Chứng minh CE.CB=AH.AB
c)Gọi I là trung điểm của CH và BI cắt AE tại F.Chứng minh FC là tiếp tuyến của đường tròn tâm O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
DB là tiếp tuyến có B là tiếp điểm(gt)
DC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: DB=DC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: DB=DC(cmt)
nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OD là đường trung trực của BC
hay OD\(\perp\)BC(đpcm)
b) Xét (O) có
ΔEAB nội tiếp đường tròn(E,A,B cùng thuộc đường tròn (O))
AB là đường kính(gt)
Do đó: ΔEAB vuông tại E(Định lí)
\(\Leftrightarrow\)BE\(\perp\)AE tại E
hay BE\(\perp\)DA
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDBA vuông tại B có BE là đường cao ứng với cạnh huyền DA, ta được:
\(DE\cdot DA=DB^2\)(1)
Ta có: DO\(\perp\)BC(cmt)
mà DO cắt BC tại F(gt)
nên BF\(\perp\)DO tại F
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDBO vuông tại B có BF là đường cao ứng với cạnh huyền DO, ta được:
\(DF\cdot DO=DB^2\)(2)
Từ (1) và (2) suy ra \(DF\cdot DO=DE\cdot DA\)(đpcm)
a: Xét (O) có
DA là tiếp tuyến
DB là tiếp tuyến
Do đó: OD là tia phân giác của góc AOB(1)
Xét (O) có
EA là tiếp tuyến
EC là tiếp tuyến
Do đó: OE là tia phân giác của góc AOC(2)
Từ (1) và (2) suy ra OD⊥OE