Ai vẽ hộ mình cái hình này với ạ!!
Cho tam giác ABC cân tại A,đường cao BH.Từ một điểm M trên cạnh BC kẻ MD vuông góc với AC tại D,MK vuông góc với AB tại K.Gọi E là điểm đối xứng của K qua BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: Cm góc BMK=góc CMD
góc BMK=90 độ-góc KBM
góc CMD=90 độ-góc MCD
mà góc KBM=góc MCD
nên góc BMK=góc CMD
=>góc BME=góc CMD
=>góc BME+góc BMD=180 độ
=>E,M,D thẳng hàng
b: K đối xứng E qua M
=>BK=BE; MK=ME
Xét ΔBKM và ΔBEM có
BK=BE
MK=ME
BM chung
=>ΔBKM=ΔBEM
=>góc BEM=góc BKM=90 độ
=>BE vuông góc ED
mà ED vuông góc DC
nên BE//DC
=>BE//HD
Xét tứ giác BEDH có
BE//HD
BH//DE
góc BHD=90 độ
=>BEDH là hình chữ nhật
c: MK=ME
=>MK+MD=ME+MD
=>MK+MD=ED=BH
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác AMBP có
D là trung điểm chung của AB và MP
MA=MB
Do đó: AMBP là hình thoi
=>ABlà phân giác của góc MAP(1)
c: Xét tứ giác AMCQ có
E là trung điểm chung của AC và MQ
MA=MC
Do đó: AMCQ là hình thoi
=>AC là phân giác của góc MAQ(2)
Từ (1), (2) suy ra góc PAQ=2*90=180 độ
=>P,A,Q thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC