K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2021

\(\left\{{}\begin{matrix}x+y=500\\\dfrac{8}{10}x+\dfrac{9}{10}y=420\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y\\\dfrac{8}{10}\left(500-y\right)+\dfrac{9}{10}y=420\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y\\400+\dfrac{y}{10}=420\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y=300\\y=200\end{matrix}\right.\)

Vậy (x,y)=(300,200)

27 tháng 5 2021

hpt <=> \(\left\{{}\begin{matrix}\dfrac{8}{10}x+\dfrac{8}{10}y=400\\\dfrac{8}{10}x+\dfrac{9}{10}y=420\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x+y=500\\\dfrac{1}{10}y=20\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x+y=500\\y=200\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=300\\y=200\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Đặt $\frac{1}{x-y+2}=a;\frac{1}{x+y-1}=b$ thì HPT trở thành cơ bản:
\(\left\{\begin{matrix} 14a-10b=9\\ 3a+2b=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 14a-10b=9\\ 15a+10b=20\end{matrix}\right.\)

$\Rightarrow (14a-10b)+(15a+10b)=9+20$

$\Leftrightarrow 29a=29\Leftrightarrow a=1$.

$b=\frac{4-3a}{2}=\frac{1}{2}$

Vậy: \(\left\{\begin{matrix} \frac{1}{x-y+2}=1\\ \frac{1}{x+y-1}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x-y+2=1\\ x+y-1=2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x-y=-1\\ x+y=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\end{matrix}\right.\)

5 tháng 3 2022

a, \(\left\{{}\begin{matrix}2x+2y=4\\2x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=-5\\x=2-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)

b, \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\x+y=10\end{matrix}\right.\)Theo tc dãy tỉ số bằng nhau 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\Rightarrow x=4;y=6\)

5 tháng 3 2022

a.\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=6\\2x-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=15\\2x-3y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\2.3-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\x+y-10=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\x+y-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2x+2y=20\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=20\\3x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\3.4-2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

 

a) Ta có: \(\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{5}{x-1}-\dfrac{15}{y-1}=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{16}{y-1}=-80\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-1=\dfrac{-1}{5}\\\dfrac{1}{x-1}=18+\dfrac{3}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x-1=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{4}{5}\end{matrix}\right.\)

8 tháng 1 2018

a) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)

Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}

b) Đk xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)

Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}

c) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)

Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}

d) ĐK xác định : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

Vậy S={(0,4;-4)}

e) ĐKXĐ : x≠0;y≠0

ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....

7 tháng 6 2021

$\begin{cases}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac16\\\dfrac{10}{3x}+\dfrac{10}{y}=1\\\end{cases}$

`<=>` $\begin{cases}\dfrac{10}{x}+\dfrac{10}{y}=\dfrac53\\\dfrac{10}{3x}+\dfrac{10}{y}=1\\\end{cases}$

`<=>` $\begin{cases}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac16\\\dfrac{20}{3}x=\dfrac23\\\end{cases}$

`<=>` $\begin{cases}x=\dfrac{1}{10}\\y=\dfrac{1}{15}\\\end{cases}$

Vậy `(x,y)=(1/10,1/15)`

7 tháng 6 2021

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{10}{3x}+\dfrac{10}{y}=1\end{matrix}\right.\left(x,y\ne0\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{10}{3}.\dfrac{1}{x}+10.\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{10}{x}+\dfrac{10}{y}=\dfrac{5}{3}\left(1\right)\\\dfrac{10}{3}.\dfrac{1}{x}+\dfrac{10}{y}=1\left(2\right)\end{matrix}\right.\)

Lấy \(\left(1\right)-\left(2\right)\Rightarrow\dfrac{20}{3}.\dfrac{1}{x}=\dfrac{2}{3}\Rightarrow\dfrac{1}{x}=\dfrac{1}{10}\Rightarrow x=10\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{1}{6}-\dfrac{1}{10}=\dfrac{1}{15}\Rightarrow y=15\)

 

7 tháng 10 2021

9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)

11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

7 tháng 10 2021

13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)

14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)

15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)

14 tháng 2 2022

Đặt ẩn bạn nhé, dễ mà

14 tháng 2 2022

Đặt \(\dfrac{1}{x-y+2}=a;\dfrac{1}{x+y-1}=b\)

Ta có HPT

\(\left\{{}\begin{matrix}14a-10b=9\\3a+2b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14a-10b=9\\15a+10b=20\end{matrix}\right.\Leftrightarrow}}\left\{{}\begin{matrix}29a=29\\3a+2b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=\dfrac{1}{2}\end{matrix}\right.\)

1 tháng 2 2021

 

Ta có: \(\left\{{}\begin{matrix}x-y=10\\\dfrac{300}{y}-\dfrac{300}{x}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\dfrac{300}{y}-\dfrac{300}{10+y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\dfrac{300\left(y+10\right)}{y\left(y+10\right)}-\dfrac{300y}{y\left(y+10\right)}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\300y+3000-300y=y\left(y+10\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\y^2+10y-3000=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\y^2+10y+25-3025=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\left(y+5\right)^2=3025\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y+10\\x=y+10\end{matrix}\right.\\\left[{}\begin{matrix}y+5=55\\y+5=-55\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=50+10=60\\x=-60+10=-50\end{matrix}\right.\\\left[{}\begin{matrix}y=50\\y=-60\end{matrix}\right.\end{matrix}\right.\)

Vậy: Hệ phương trình có hai cặp nghiệm là (x,y)\(\in\){(-50;-60);(60;50)}