Cho Δ DEF có DE= DF.Tia phân giác của ∠D cắt EF tại I.
a) chứng minh Δ DEF=Δ DFI.
b)Kẻ IH vuông góc với DE(H ϵ DE),IK vuông góc với DF(K ϵ DF).Chứng minh IH=IK
c)Biết ∠D=3∠E. Tính số đo các góc của tam giác DEF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . Áp dụng đl pytago đảo vào t/g DEF có :
DE^2 = EF^2 - DF^2 = 5^2 - 3^2 = 16
DE = 4
=> t/g DEF là tg vuông .
c . K ; H và M cùng nằm trên 1 đường thẳng không tạo t/g đc e nhé!
a) xét ΔHED và ΔDEF có
\(\widehat{EHD}=\widehat{EDF}=\)90o
\(\widehat{E} chung\)
=> ΔHED ∼ ΔDEF (gg)
b) Xét ΔDEF có \(\widehat{D}=\)90o
=> DE2+DF2=EF2
=>62+82=EF2
=> EF=10 cm
SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10
=> DH =4,8 cm
c) Xét ΔDEH có \(\widehat{EHD}=90\)o
=> HD2.HE2=ED2
=>4.82+HE2=62
=> HE=3.6
ta lại có DI là phân giác
=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)
=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2
=> IH=EH-EI=3.6-2=1.6
a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có
\(\widehat{HED}\) chung
Do đó: ΔHED\(\sim\)ΔDEF(g-g)
Xét ΔEDI vuông tại D và ΔEHI vuông tại H có
EI chung
\(\widehat{DEI}=\widehat{HEI}\)
Do đó ΔEDI=ΔEHI
Suy ra: ID=IH
Xét ΔDEI vuông tại E và ΔDHI vuông tại H có
DI chung
góc EDI=góc HDI
=>ΔDEI=ΔDHI