K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

à, bổ sung thêm Phần cuối

A chia hết cho 120 

Vậy tổng trên chia hết cho 120

23 tháng 12 2017

đặt A = 3 + 32 + 33 + 34 + .... + 32012

A = ( 3 + 32 + 33 + 34 ) + ... + ( 32009 + 32010 + 32011 + 32012 )

A = 120 + ... + 32008 . ( 3 + 32 + 33 + 34 )

A = 120 + ... + 32008 . 120

A = 120 . ( 1 + ... + 32008 )

22 tháng 12 2018

B=2+2^2+2^3+.......+2^30

B=(2+2^2+2^3)+(2^4+2^5+2^6)+......................+(2^28+2^29+2^30)

B=2x(1+2+2^2)+2^4x(1+2+2^2)+......+2^28 x (1+2+2^2)

B= 2x7+2^4x7+....................+2^28x7

B=7 x (2+2^4+..........+2^28)

Ta thấy 7chia hết cho 7 do đó 7 x (2+2^4+.....+2^28) cũng chia hết cho 7 hay B chia hết cho 7

24 tháng 10 2016

\(1+^2+4^3+......+4^{10}+4^{11}\)

\(=\left(1+4\right)+\left(4^2+4^3\right)+.....+\left(4^{10}+4^{11}\right)\)

Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 5. Vậy tổng \(1+^2+4^3+......+4^{10}+4^{11}\) chia hết cho 5

\(7+7^2+7^3+.....+7^{102}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+....+\left(7^{101}+7^{102}\right)\)

Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 8. Vậy tổng \(7+7^2+7^3+.....+7^{102}\) chia hết cho 8

24 tháng 10 2016

a, \(1+4+4^2+...+4^{11}\)

Đặt : \(S=1+4+4^2+...+4^{11}\)

Ta có : Số số hạng của dãy số S chính là số số hạng của dãy số cách đều từ 0 --> 11 mỗi số cách nhau 1 đơn vị

=> Số số hạng của S là : \(\frac{11-0}{1}+1=12\) ( số hạng )

Vậy ta có số nhóm là :

12 : 2 = 6 ( nhóm ) :

\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{10}+4^{11}\right)\) ( 6 nhóm )

\(\Rightarrow S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{10}\left(1+4\right)\)

\(\Rightarrow S=1.5+4^2.5+...+4^{10}.5\)

\(\Rightarrow S=\left(1+4^2+...+4^{10}\right).5\)

Mà : \(1+4^2+...+4^{10}\in N\Rightarrow S⋮5\)

---------

Tương tự để chứng minh S chia hết cho 21 ta có số nhóm là :

12 : 3 = 4 ( nhóm )

\(S=\left(1+4+4^2\right)+...+\left(4^9+4^{10}+4^{10}\right)\) ( 4 nhóm )

\(\Rightarrow S=\left(1+4+4^2\right)+...+4^9\left(1+4+4^2\right)\)

\(\Rightarrow S=1.21+...+4^9.21\)

\(\Rightarrow S=\left(1+...+4^9\right).21\)

Mà : \(1+...+4^9\in N\Rightarrow S⋮21\)

b, \(7+7^2+7^3+...+7^{102}\)

Đặt : \(M=7+7^2+7^3+...+7^{102}\)

Ta có : Số số hạng của dãy số M chính là số số hạng của dãy số cách đều từ 1 --> 102 mỗi số cách nhau 1 đơn vị

=> Số số hạng của M là : \(\frac{102-1}{1}+1=102\) ( số hạng )

Vậy có tất cả số nhóm là :

102 : 2 = 51 ( nhóm )

\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{101}+7^{102}\right)\)

\(\Rightarrow M=\left(7+7^2\right)+7^2\left(7+7^2\right)+...+7^{100}\left(7+7^2\right)\)

\(\Rightarrow M=1.56+7^2.56+...+7^{100}.56\)

\(\Rightarrow M=\left(1+7^2+...+7^{100}\right).56\)

Vì : 56 = 8.7 . Mà : \(1+7^2+...+7^{100}\in N\Rightarrow M⋮8\)

17 tháng 10 2019

Có : 126 chia hết cho 3, 213 chia hết cho 3

Để được M chia hết cho 3 thì x phải chia hết cho 3

Hay gọi là 3k ( k thuộc N)

2.

Hình như đầu bài bài 2 sai

24 tháng 10 2019

dung do khong sai dau

26 tháng 10 2021
a,là số chính phương
26 tháng 10 2021
b,không phải là số chính phương
12 tháng 10 2016

A=3+32+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+...+3100)

2A=3101-3

a) 2A+3=3101-3+3=3101=3n

=>n=101

b) A=3+32+...+3100

A=(3+32)+...+(399+3100)

A=3.(1+3)+...+399.(1+3)

A=3.4+...+399.4

A=(3+...+399).4

=>A chia hết cho 4

A=3+32+...+3100

A=(3+32)+...+(399+3100)

A=3.(3+32)+...+399.(3+32)

A=3.12+...+399.12

A=(3+...+399).12

=>A chia hết cho 12

12 tháng 10 2016

Mình có làm câu a rồi, bạn tham khảo nhé! 
A= 3 + 3^2 + 3^3 +..........+ 3^100
3.A =3^2 + 3^3 +3^4 +..........+ 3^100 + 3^101
3.A - A = 2.A
3^101 - 3 = 2.A 
=>2.A + 3 =3^101
=> n = 101
 

12 tháng 10 2016

A=\(A=3+3^2+3^3+.....+3^{100}\\ \Rightarrow3A=3^2+3^3+....+3^{101}\\ \Rightarrow2A=3^{101}-3\\ \Rightarrow A=\frac{3^{101}-3}{2}\\ \)

a) \(A=\frac{3^{101}-3}{2}\\ \Rightarrow 2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}-3+3=3^{101}=3^n\\ \Rightarrow n=101\)

b) \(3+3^2+3^3+....+3^{100}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{98}+3^{100}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{98}\left(1+3\right)\\ =3.4+3^3.4+...+3^{98}.4\)

Vậy A chia  hết cho 4 ; A cũng chia hết cho 3 vì mỗi số hạng của A đều  chia hết cho 3 

Mà (3;4)=1 => a chia hết cho 12 

26 tháng 5 2017

Lần sau viết cái đề rõ rõ ra nhs!!!

a) \(A=2+2^2+2^3+................+2^{100}\)

\(\Rightarrow2A=2^2+2^3+2^4+................+2^{100}+2^{101}\)

\(\Rightarrow2A-A=\left(2^2+2^3+..............+2^{100}+2^{101}\right)-\left(2+2^2+............+2^{100}\right)\)

\(\Rightarrow A=2^{101}-2\)

b) \(B=1+3+3^2+..................+3^{2009}\)

\(\Rightarrow3B=3+3^2+3^3+..................+3^{2009}+3^{2010}\)

\(\Rightarrow3B-B=\left(3+3^2+...............+3^{2010}\right)-\left(1+3+3^2+.............+3^{2009}\right)\)

\(\Rightarrow2B=3^{2010}-1\)

\(\Rightarrow B=\dfrac{3^{2010}-1}{2}\)

c) \(C=4+4^2+4^3+................+4^n\)

\(\Rightarrow4C=4^2+4^3+.................+4^n+4^{n+1}\)

\(\Rightarrow4C-C=\left(4^2+4^3+.............+4^n+4^{n+1}\right)-\left(4+4^2+............+4^n\right)\)

\(\Rightarrow3C=4^{n+1}-4\)

\(\Rightarrow C=\dfrac{4^{n+1}-4}{3}\)

26 tháng 5 2017

thanks