K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

Bạn tự vẽ hình nhé. Tại mình thấy đề AH vuông góc BC hơi sai nên sẽ sửa là EH nha.

                                                                                               Giải

a, Vì EH \(\perp BC\)( gt ) \(\Rightarrow\)\(\Delta HBE\)vuông tại H.

Xét \(\Delta\)vuông ABE và \(\Delta\) vuông HBE, có :

BE : cạnh chung

góc ABE = góc HBE ( BE là tpg góc ABC )

\(\Rightarrow\)\(\Delta\)vuông ABE = \(\Delta\) vuông HBE ( cạnh huyền góc nhọn )

b, Ta có : BA=BH ( \(\Delta\) vuông ABE = \(\Delta\) vuông HBE ) \(\Rightarrow\) \(\Delta BAH\) cân tại B ( đ/n )

Mà góc ABC = 60o ( gt ) \(\Rightarrow\) \(\Delta BAH\) đều.

\(\Rightarrow\)AB=AH=BH ( đ/n ) 

Xét \(\Delta\) vuông ABC, có :

góc ABC + góc BCA = 90o ( 2 góc phụ nhau )

\(\Rightarrow\)60o + góc BCA = 90o       \(\Rightarrow\)góc BCA = 30o

Mà góc EBH = 30o ( vì BE là tpg góc ABC , góc ABC = 60o )

\(\Rightarrow\)góc EBC = góc BCA ( =30o )

\(\Rightarrow\)\(\Delta\)BEC cân tại E ( t/c )  \(\Rightarrow\)BE = EC ( đ/n )

Xét \(\Delta\) vuông HEB và \(\Delta\) vuông HEC , có :

BE=EC ( cmt )

góc EBH = góc ECH ( cmt )

\(\Rightarrow\)\(\Delta\)vuông HEB = \(\Delta\) vuông HEC ( cạnh huyền góc nhọn )

\(\Rightarrow\)BH = CH ( 2 cạnh tương ứng )

c,  Xét \(\Delta\) vuông ABE , có :

góc ABE + góc AEB  = 90o ( 2 góc phụ nhau ), mà góc ABE = 30o ( BE là tpg góc ABC )

\(\Rightarrow\)góc AEB = 60o

Ta có : góc AEB = góc HEB = 60O\(\Delta\) vuông ABE = \(\Delta\) vuông HBE )

Mà BE // HK ( gt ) \(\Rightarrow\) góc HEB = góc EHK = 60o( 2 góc so le trong )

Vì BE // HK ( gt )   \(\Rightarrow\) góc AEB = góc EKH = 60o ( 2 góc đồng vị )

Xét \(\Delta EHK\) , có :

góc EHK + góc EKH + góc KEH = 180o ( tổng 3 góc trong tam giác )

\(\Rightarrow\)60o + 60o + góc KEH = 180o

\(\Rightarrow\)góc KEH = 60o

Ta nhận thấy trong tam giác EKH cả 3 góc đều bằng 60o ( cmt )

\(\Rightarrow\)\(\Delta EKH\)là tam giác đều ( t/c)

d, Xét \(\Delta\) AEI và \(\Delta HEC\) , có :

góc EAI = góc EHC ( = 900 )

AE=EH ( \(\Delta\) vuông ABE = \(\Delta\) vuông HBE )

góc AEI = góc HEC ( 2 góc đối đỉnh )

\(\Rightarrow\Delta AEI=\Delta HEC\)( g-c-g )

\(\Rightarrow\)EI = EC ( 2 cạnh tương ứng )

Xét \(\Delta\) vuông HEC, có :

EC > EH ( cạnh huyền > cạnh góc vuông )           , mà EC = EI ( cmt )

\(\Rightarrow\)EI hay IE > EH          ( đpcm )

30 tháng 4 2022

loading...

a) Xét \(\Delta ABE\) và \(\Delta HBE\):

BE chung

\(\widehat{ABE}=\widehat{EBH}\)

\(\widehat{EAB}=\widehat{EHB}=90^o\)

\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)

b) \(\widehat{EBH}=\dfrac{1}{2}\widehat{B}=30^o\)

\(\widehat{ACB}=90^o-\widehat{B}=30^o\)

\(\Rightarrow\Delta EBC\) cân tại E

Mà EH vuông góc BC

\(\Rightarrow HB=HC\)

c) \(\widehat{HEB}=90^o-\widehat{EBH}=60^o\)

\(KH//BE\Rightarrow\widehat{KHE}=\widehat{HEB}=60^o\)

\(\widehat{HEB}+\widehat{AEB}=60^o+60^o=120^o\)

\(\Rightarrow\widehat{KEH}=180^o-120^o=60^o\)

\(\Rightarrow\Delta EHK\)  đều

d) Theo phần a. \(\Delta ABE=\Delta HBE\Rightarrow AE=EH\)

\(\Delta IAE\) vuông ở A \(\Rightarrow IE>AE\)

\(\Rightarrow IE>EH\)

1 tháng 5 2022

a) Xét ΔABEΔABE và ΔHBEΔHBE:

BE chung

ˆABE=ˆEBHABE^=EBH^

ˆEAB=ˆEHB=90oEAB^=EHB^=90o

⇒ΔABE=ΔHBE(ch−gn)⇒ΔABE=ΔHBE(ch−gn)

b) ˆEBH=12ˆB=30oEBH^=12B^=30o

ˆACB=90o−ˆB=30oACB^=90o−B^=30o

⇒ΔEBC⇒ΔEBC cân tại E

Mà EH vuông góc BC

⇒HB=HC⇒HB=HC

c) ˆHEB=90o−ˆEBH=60oHEB^=90o−EBH^=60o

KH//BE⇒ˆKHE=ˆHEB=60oKH//BE⇒KHE^=HEB^=60o

ˆHEB+ˆAEB=60o+60o=120oHEB^+AEB^=60o+60o=120o

⇒ˆKEH=180o−120o=60o⇒KEH^=180o−120o=60o

⇒ΔEHK⇒ΔEHK  đều

d) Theo phần a. ΔABE=ΔHBE⇒AE=EHΔABE=ΔHBE⇒AE=EH

ΔIAEΔIAE vuông ở A ⇒IE>AE

 

 

5 tháng 5 2019

a, xét tam giác ABE và tam giác HBE có : BE chung

góc ABE = góc HBE do BE là phân giác

góc BAE = góc BHE = 90 

=> tam giác ABE = tam giác HBE (ch - gn)

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

b: ta có: ΔABE=ΔHBE

nên AE=HE; BA=BH

Suy ra: BE là đường trung trực của AH

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

góc ABE=góc DBE

=>ΔBAE=ΔBDE
b: BA=BD

EA=ED

=>BE là trung trực của AD
c: góc BAD+góc CAD=90 độ

góc HAD+góc BDA+90 độ

góc BAD=góc BDA

=>góc CAD=góc HAD

=>AD làphân giác của góc HAC

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
1 tháng 5 2019

a, AC = AK. AE ⊥ CK.

Xét hai tam giác vuông ACE và AKE có:

AE : chung

^CAE = ^KAE (AE là phân giác)

Do đó: ΔACE = ΔAKE (cạnh huyền - góc nhọn)

=> AC = AK (hai cạnh tương ứng) 

=> ΔACK cân tại A

=> ^ACK = ^AKC (hai góc ở đáy)

Gọi giao của AE và CK là I

Xét ΔCAI và ΔKAI có: ^CAI + ^AIC + ^ACI = ^KAI + ^KIA + ^AKI (= 180o)

Mà : ^CAI = ^KAI (AE là phân giác) , ^ACK = ^AKC (cmt) 

=> ^AIC = ^AIK  Mà ^AIC + ^AIK = 180o (kề bù)

=> ^AIC = ^AIK = 180o : 2 = 90 

Hay AE ⊥ CK

b, KA = KB

Ta có: ^CAI = ^KAI = ^CAB/2 = 60o/2 = 30o (AE là phân giác)

Xét ΔABC vuông tại C có: ^BAC + ^ABC = 90o (phụ nhau) => ^ABC = 90o - ^BAC = 90o - 60o = 30o.

Xét ΔAKE vuông tại K có: ^EAK + ^AEK = 90o (phụ nhau)=> ^AEK = 90o  - ^EAK = 90o - 30o = 60o.

Xét ΔKEB vuông tại K có: ^KEB + ^ABC = 90o (phụ nhau) => ^KEB = 90o - ^ABC = 90o - 30o = 60o.

Xét hai tam giác vuông KEA và KEB có:

KE : chung

^KEA = ^KEB (=60o)

Do đó: ΔKEA = ΔKEB (cgv-gnk)

=> KA = KB (hai cạnh tương ứng)

c) EB > AC

Vì  ΔKEA = ΔKEB (câu b)

=> AE = EB (hai cạnh tương ứng)   (1)

Xét ΔAEC vuông tại C có: AE > AC (định lí)    (2)

Từ (1) và (2) suy ra: EB > AC

d) AC, BD, KE đồng quy.

Gọi giao điểm của AC và BD là G.

Xét ΔABG có: AD ⊥ BG và  BC ⊥ AG 

Mà chúng cắt nhau tại E => E là trực tâm 

Nên G, E, K thẳng hàng 

Vậy AC, BD, KE cùng đi qua một điểm (đồng quy)

P/s: tự vẽ hình, không hiểu chỗ nào = inbox hỏi.