So sánh A và căn A biết A=\(\frac{x+y+\sqrt{xy}}{\sqrt{xy}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : x>0 hoặc y>0;
\(x-\sqrt{xy}+y=\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}\ge\sqrt{xy}\)
\(\Leftrightarrow\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\le\frac{x-\sqrt{xy}+y}{x-\sqrt{xy}+y}=1\).
\(\sqrt{xy}\ge0;x-\sqrt{xy}+y>0\Rightarrow A\ge0\)
\(\Rightarrow0\le A\le1\Leftrightarrow\sqrt{A}\le\sqrt{1}=1\Leftrightarrow\sqrt{A}.\sqrt{A}\le1.\sqrt{A}\Leftrightarrow A\le\sqrt{A}\)
\(P=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\frac{1-xy+x+y+2xy}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}.\)
\(P=\frac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1+x+y+xy}\)
\(P=\frac{2\sqrt{x}}{1+x+y+xy}\)Với ĐK \(x\ge0\) và \(y\ge0\)Và \(xy\ne1\)
Nguyễn Ngọc Anh Minh bạn làm sai rồi kìa bước cuối cùng vẫn còn \(2y\sqrt{x}\)
\(P=\left[\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{y}-y\sqrt{x}}{y-x}\right]:\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\left[\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x}\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}\right]:\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\left[\sqrt{x}+\sqrt{y}-\frac{\sqrt{x}\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}\right]:\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\left[\sqrt{x}+\sqrt{y}-\frac{\sqrt{x}\sqrt{y}}{\left(\sqrt{y}+\sqrt{x}\right)}\right]:\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-\sqrt{x}\sqrt{y}}{\left(\sqrt{y}+\sqrt{x}\right)}:\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-\sqrt{x}\sqrt{y}}{\left(\sqrt{y}+\sqrt{x}\right)}.\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}\)
\(=\frac{x+2\sqrt{xy}+y-\sqrt{xy}}{x-2\sqrt{xy}+y+\sqrt{xy}}\)
\(=\frac{x+\sqrt{xy}+y}{x-\sqrt{xy}+y}\)
\(A=\frac{x+y+\sqrt{xy}}{\sqrt{xy}}\)
\(A=\frac{x}{\sqrt{xy}}+\frac{y}{\sqrt{xy}}+1\)
\(A=\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}+1\)
\(A=\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}+1\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}+1=3\)
\(< =>A\ge3< =>A>1\)
một số lớn hơn 1 thì căn của nó sẽ bé hơn số đó
\(A>\sqrt{A}\)