K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

m, n ko chia hết cho 3 => Xét 2 trường hợp:

_m, n đều chia 3 dư 1

=> m=3k+1 ; n=3k'+1

=> m-n=(3k+1)-(3k'+1)=3k +1 - 3k'-1=3(k-k') chia hết cho 3

=> (m-n)(m+n) chia hết cho 3 hay m^2-n^2 chia hết cho 3(1)

_m chia 3 dư 1; n chia 3 dư 2(hoặc m chia 3 dư 2; n chia 3 dư 1)

Làm tương tự, xét tổng m+n chia hết cho 3

=> m^2-n^2 chia hết cho 3(2)

_Từ (1),(2)=> đpcm

19 tháng 8 2020

Bài 1.

2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2nn + 6n

= 6n \(⋮6\forall n\inℤ\)( đpcm )

Bài 2.

P = ( m2 - 2m + 4 )( m + 2 ) - m3 + ( m + 3 )( m - 3 ) - m2 - 18

P = m3 + 8 - m3 + m2 - 9 - m2 - 18

P = 8 - 9 - 18 = -19

=> P không phụ thuộc vào biến M ( đpcm )

20 tháng 11 2019

Các cụ cho con bỏ câu này

20 tháng 11 2019

đề sai bn nhé

Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1

Đơn giản thôi: 

Xét n=3k=> n^2=9k^2 chia hết cho 3

Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1 

Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1


Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.

b) Có mn(m^2-n^2)

=mn(m-n)(m+n)

Nếu m hoặc n chia hết cho 3 thì xong luôn

Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3

Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3

Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3

xét m=2=>2m=4 không chia hết cho 3n+1(với n>1)

Xét m=3=>điều tương tự

Xét m>3:

Với n=2k:

=>3n=32k+1=9k+1

9 đồng dư với 1(mod 8)

1 đồng dư với 1(mod 8)

=>3n+1 đồng dư với 2(mod 8)      (*)

với n=2k+1

=>3n=32k+1+1=9k.3+1

9 đồng dư với 1(mod 8)

1 đồng dư với 1(mod 8)

3 đồng dư với 3(mod 8)

=>3n đồng dư với 4(mod 8)      (**)

Từ (*);(**)=>3n+1 không phải lũy thừa của 2 (1)

để 2m chia hết cho 3n+1 thì 3n+1 phải là lũy thừa của 2(2)

từ (1);(2)=>2n không chia hết cho 3n+1

=>đpcm

24 tháng 12 2017

theo mình thì không thể như thế được ví dụ nhé m=4 không chia hết cho 3 còn n=3 thì

\(4^2-3^2=7\) không chia hết cho 3 còn gì

24 tháng 12 2017

đè sai rồi nhé

ta có m,n không chi hết cho 3

=>\(\hept{\begin{cases}m^2\equiv1\left(mod3\right)\\n^2\equiv1\left(mod3\right)\end{cases}}\)

=>\(m^2+n^2\equiv2\left(mod3\right)\Rightarrow m^2+n^2̸\) không chia hết cho 3

5 tháng 9 2016

Do m2; n2 là số chính phương nên m2; n2 chia 3 chỉ có thể dư 0 hoặc 1

+ Nếu m2; n2 chia 3 cùng dư 1 thì m2 + n2 chia 3 dư 2 (trái với đề bài)

+ Nếu trong 2 số m2; n2 có 1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2 + n2 chia 3 dư 1 (trái với đề bài)

=> m2; n2 cùng chia hết cho 3

Mà 3 là số nguyên tố => m chia hết cho 3; n chia hết cho 3 (đpcm)

Do m2;n2 là số chính phương nên m2;n2 chia hết cho 3 chỉ có thể dư 0 hoặc 1.

+ Nếu m2;n2 chia 3 cùng dư 1 thì m2+n2 chia 3 dư 2 (trái với đề bài có - vô lí)

+ Nếu trong 2 xố m2; n2 có  1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2+n2 chia 3 dư 1 (trái đề bài- vô lí)

=> m2;n2 cùng chia hết cho 3

Mà 3 là số nguyên tố=> m chia hết cho 3; n chia hết cho 3  (điều phải chứng minh)