Ch m, n không chia hết cho 3. CMR \(m^2-n^2⋮3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m, n ko chia hết cho 3 => Xét 2 trường hợp:
_m, n đều chia 3 dư 1
=> m=3k+1 ; n=3k'+1
=> m-n=(3k+1)-(3k'+1)=3k +1 - 3k'-1=3(k-k') chia hết cho 3
=> (m-n)(m+n) chia hết cho 3 hay m^2-n^2 chia hết cho 3(1)
_m chia 3 dư 1; n chia 3 dư 2(hoặc m chia 3 dư 2; n chia 3 dư 1)
Làm tương tự, xét tổng m+n chia hết cho 3
=> m^2-n^2 chia hết cho 3(2)
_Từ (1),(2)=> đpcm
Bài 1.
2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2nn + 6n
= 6n \(⋮6\forall n\inℤ\)( đpcm )
Bài 2.
P = ( m2 - 2m + 4 )( m + 2 ) - m3 + ( m + 3 )( m - 3 ) - m2 - 18
P = m3 + 8 - m3 + m2 - 9 - m2 - 18
P = 8 - 9 - 18 = -19
=> P không phụ thuộc vào biến M ( đpcm )
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
xét m=2=>2m=4 không chia hết cho 3n+1(với n>1)
Xét m=3=>điều tương tự
Xét m>3:
Với n=2k:
=>3n=32k+1=9k+1
9 đồng dư với 1(mod 8)
1 đồng dư với 1(mod 8)
=>3n+1 đồng dư với 2(mod 8) (*)
với n=2k+1
=>3n=32k+1+1=9k.3+1
9 đồng dư với 1(mod 8)
1 đồng dư với 1(mod 8)
3 đồng dư với 3(mod 8)
=>3n đồng dư với 4(mod 8) (**)
Từ (*);(**)=>3n+1 không phải lũy thừa của 2 (1)
để 2m chia hết cho 3n+1 thì 3n+1 phải là lũy thừa của 2(2)
từ (1);(2)=>2n không chia hết cho 3n+1
=>đpcm
theo mình thì không thể như thế được ví dụ nhé m=4 không chia hết cho 3 còn n=3 thì
\(4^2-3^2=7\) không chia hết cho 3 còn gì
đè sai rồi nhé
ta có m,n không chi hết cho 3
=>\(\hept{\begin{cases}m^2\equiv1\left(mod3\right)\\n^2\equiv1\left(mod3\right)\end{cases}}\)
=>\(m^2+n^2\equiv2\left(mod3\right)\Rightarrow m^2+n^2̸\) không chia hết cho 3
Do m2; n2 là số chính phương nên m2; n2 chia 3 chỉ có thể dư 0 hoặc 1
+ Nếu m2; n2 chia 3 cùng dư 1 thì m2 + n2 chia 3 dư 2 (trái với đề bài)
+ Nếu trong 2 số m2; n2 có 1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2 + n2 chia 3 dư 1 (trái với đề bài)
=> m2; n2 cùng chia hết cho 3
Mà 3 là số nguyên tố => m chia hết cho 3; n chia hết cho 3 (đpcm)
Do m2;n2 là số chính phương nên m2;n2 chia hết cho 3 chỉ có thể dư 0 hoặc 1.
+ Nếu m2;n2 chia 3 cùng dư 1 thì m2+n2 chia 3 dư 2 (trái với đề bài có - vô lí)
+ Nếu trong 2 xố m2; n2 có 1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2+n2 chia 3 dư 1 (trái đề bài- vô lí)
=> m2;n2 cùng chia hết cho 3
Mà 3 là số nguyên tố=> m chia hết cho 3; n chia hết cho 3 (điều phải chứng minh)