K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Ta có : \(x^2+2018y^2-4xy-3x+6y+2=0\)

\(\Leftrightarrow x^2-4xy+4y^2-3\left(x-2y\right)+2+2014y^2=0\)

\(\Leftrightarrow\left(x-2y\right)^2-3\left(x-2y\right)+2=-2014y^2\)

do \(y^2\ge0\Rightarrow-2014y^2\le0\)

\(\Rightarrow\left(x-2y\right)^2-3\left(x-2y\right)+2\le0\)

\(\Leftrightarrow\left(x-2y-1\right)\left(x-2y-2\right)\le0\)

\(\Leftrightarrow1\le x-2y\le2\) Vậy Min P = 1 khi x = 1 ; y = 0

Max P = 2 khi x = 2 ; y = 0

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

https://olm.vn/hoi-dap/detail/83670859470.html

https://olm.vn/hoi-dap/detail/83670859470.html

https://olm.vn/hoi-dap/detail/83670859470.html