Cho 3a>2b>0 và 9a^2+4b^2=13ab. Chứng minh rằng \(A=\frac{ab}{9a^2-4b^2}=\frac{1}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(2b< 3a< 0\) ( đoạn này mk cho thêm điều kiện nhá, hình như bạn thiếu )
\(M^2=\frac{9a^2+4b^2-12ab}{9a^2+4b^2+12ab}=\frac{20ab-12ab}{20ab+12ab}=\frac{8ab}{32ab}=\frac{1}{4}\)
Do \(2b< 3a< 0\Rightarrow3a-2b>0,3a+2b< 0\Rightarrow M< 0\)
Vậy \(M=-\frac{1}{2}\)
\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)
\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)
\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)
\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)
\(=\frac{3a^2-b^2}{b^2}\)
\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)
\(A=\frac{2ab}{4ab}+\frac{2ab}{a^2+4b^2}+\frac{1}{8ab}-\frac{1}{2}\)
áp dụng bđt AM-GM , a,b> 0
\(\Rightarrow A\ge2ab\left(\frac{4}{4ab+a^2+4b^2}\right)+\frac{1}{8ab}-\frac{1}{2}\)
\(\Rightarrow A\ge\frac{8ab}{1}+\frac{1}{8ab}-\frac{1}{2}\)
\(\Rightarrow A\ge2-\frac{1}{2}=\frac{3}{2}\)
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
9a2 + 4b2 = 13ab => (3a)2 + 2.3a.2b + (2b)2 = 25ab => (3a+2b)2 = 25ab => 3a + 2b = 5\(\sqrt{ab}\) (do 3a ; 2b > 0)
9a2 + 4b2 = 13ab => (3a)2 - 2.3a.2b + (2b)2 = ab => (3a- 2b)2 = ab => 3a - 2b = \(\sqrt{ab}\) (ví 3a > 2b > 0)
A = \(\frac{ab}{\left(3a-2b\right)\left(3a+2b\right)}=\frac{ab}{\sqrt{ab}.5\sqrt{ab}}=\frac{1}{5}\)