Tìm x,biết
A,\(1\frac{1}{2}:\frac{x}{4}=6:0,3\)
B,\(2\frac{2}{3}:x=1\frac{7}{9}:2\frac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(\frac{2}{5}-x\right):1\frac{1}{3}+\frac{1}{2}=-4\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}+\frac{1}{2}=-4\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}=-4-\frac{1}{2}\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}=-\frac{9}{2}\)
\(\frac{2}{5}-x=-\frac{9}{2}.\frac{4}{3}\)
\(\frac{2}{5}-x=-3\)
\(x=\frac{2}{5}-\left(-3\right)\)
\(x=\frac{2}{5}+3\)
\(x=\frac{3}{5}-\frac{15}{5}\)
\(x=-\frac{12}{5}\)
Vay \(x=-\frac{12}{5}\)
b ) \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15+6+10}{15}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\frac{31}{15}=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{5}{4}.\frac{31}{15}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{1}{4}.\frac{31}{3}\)
\(-3+\frac{3}{x}-\frac{1}{3}=-\frac{31}{12}\)
\(-3+\frac{3}{x}=-\frac{31}{12}+\frac{1}{2}\)
\(-3+\frac{3}{x}=-\frac{31}{12}+\frac{6}{12}\)
\(-3+\frac{3}{x}=\frac{-25}{12}\)
\(\frac{3}{x}=\frac{-25}{12}+3\)
\(\frac{3}{x}=\frac{-25}{12}+\frac{36}{12}\)
\(\frac{3}{x}=\frac{5}{6}\)
\(\frac{18}{6x}=\frac{5x}{6x}\)
Đèn dây , bạn tự làm tiếp nhé , de rồi chứ
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
a) Ta có: \(\left(x-2\right)^3+\frac{8}{27}=0\)
\(\Leftrightarrow\left(x-2\right)^3=\frac{-8}{27}\)
\(\Leftrightarrow\left(x-2\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Leftrightarrow x-2=\frac{-2}{3}\)
hay \(x=\frac{-2}{3}+2=\frac{4}{3}\)
Vậy: \(x=\frac{4}{3}\)
b) Ta có: \(4\frac{1}{3}:\frac{x}{4}=6:0,3\)
\(\Leftrightarrow\frac{13}{3}\cdot\frac{4}{x}=20\)
\(\Leftrightarrow\frac{4}{x}=20:\frac{13}{3}=20\cdot\frac{3}{13}=\frac{60}{13}\)
hay \(x=\frac{13\cdot4}{60}=\frac{13}{15}\)
Vậy: \(x=\frac{13}{15}\)
c) Ta có: \(\left(0,25-30\%x\right)\cdot\frac{1}{3}-\frac{1}{4}=5\frac{1}{6}\)
\(\Leftrightarrow\left(\frac{1}{4}-\frac{3x}{10}\right)\cdot\frac{1}{3}=\frac{31}{6}+\frac{1}{4}=\frac{65}{12}\)
\(\Leftrightarrow\frac{1}{4}-\frac{3x}{10}=\frac{65}{12}:\frac{1}{3}=\frac{65}{12}\cdot3=\frac{65}{4}\)
\(\Leftrightarrow\frac{3x}{10}=\frac{1}{4}-\frac{65}{4}=-16\)
\(\Leftrightarrow3x=-160\)
hay \(x=\frac{-160}{3}\)
Vậy: \(x=\frac{-160}{3}\)
d) Ta có: \(\frac{x-2}{-\frac{2}{9}}=\frac{-2}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=-2\cdot\left(-\frac{2}{9}\right)=\frac{4}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=\frac{2}{3}\\x-2=-\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}+2\\x=\frac{-2}{3}+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{8}{3};\frac{4}{3}\right\}\)
a/ (x - 2)3 + \(\frac{8}{27}\) = 0
=> (x - 2)3 = 0 - \(\frac{8}{27}\) = \(\frac{-8}{27}\)
=> x - 2 = \(-\frac{2}{3}\)
=> x = \(-\frac{2}{3}+2=\frac{4}{3}\)
b/ \(4\frac{1}{3}:\frac{x}{4}=6:0,3\)
=> \(4\frac{1}{3}:\frac{x}{4}=6:\frac{3}{10}=6.\frac{10}{3}=20\)
=> \(\frac{x}{4}=4\frac{1}{3}:20=\frac{13}{3}.\frac{1}{20}=\frac{13}{60}\)
=> \(x=\frac{13}{60}.4=\frac{13}{15}\)
c/ \(\left(0,25-30\%x\right).\frac{1}{3}-\frac{1}{4}=5\frac{1}{6}\)
=> \(\left(0,25-30\%x\right).\frac{1}{3}=5\frac{1}{6}+\frac{1}{4}=\frac{65}{12}\)
=> \(0,25-\frac{30}{100}x=\frac{65}{12}:\frac{1}{3}=\frac{65}{12}.3=\frac{65}{4}\)
=> \(\frac{3}{10}x=0,25-\frac{65}{4}=\frac{1}{4}-\frac{65}{4}=-\frac{64}{4}=-16\)
=> \(x=-16:\frac{3}{10}=-16.\frac{10}{3}=-\frac{160}{3}\)
a, ( 152 +và 2/4 - 148 và 3/8 ) : 0,2 = x : 0,3
=> 33/8 : 1/5 = x : 3/10
=> x : 3/10 = 165/8
=> x = 99/10
b, ( 85 và 7/30 - 83 và 5/18 ) : 2 và 2/3 = 0,01x : 4
=> 88/45 : 8/3 = 0,01x : 4
=> 0,01x : 4 = 11/15
=> 0,01x = 44/15
=> x = 880/3
c, x - 1/ x + 5 = 6/7
=> 7( x - 1 ) = 6( x + 5 )
=> 7x - 7 = 6x + 30
=> 7x - 6x = 7 + 30
=> x = 37
d, x2/6 = 24/25
=> x2. 25 = 6 . 24
=> x2.25 = 144
=> x2 = 144/25
=> x = ( 12/5)2 hoặc x = ( -12/5)
g, x - 3/ x + 5 = 5/7
=> 7( x - 3 ) = 5 ( x + 5 )
=> 7x - 21 = 5x + 25
=> 7x - 5x = 21 + 25
=> 2x = 46
=> x = 23