Cho tam giác ABC. Qua trung điểm M của cạnh BC kẻ đường thẳng // với AB cắt AC tại N. Trên tia BA lấy điểm I sao cho BI = MN. Chứng minh: IM // AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác IBM và tam giác MNI ta có
MI=MI canh chung
BI= MN (gt)
góc MIB = góc IMN ( 2 góc so letrong và AB//MN)
-> tam giac IBM = tam giac MNI (c-g-c)
-> góc BMI = góc MIN
mà 2 góc o vi tri sole trong
nên IM //AC
MN // AB nên ∠NMC=∠ABC∠NMC=∠ABC (đồng vị)
ΔIBM=ΔNMCΔIBM=ΔNMC(c. g. c) nên ∠IMB=∠ACB.∠IMB=∠ACB.Mà hai góc này ở vị trí đồng vị nên IM // AC.
TA CÓ:
IM là cạnh chung
BI=MN(gt)
góc MIB=góc IMN (AB//MN)
TAM giác IBM=Tam giác INM(c-g-c)
góc BMI=góc MIN
suy ra IM//AC
Ta có : Tam giác ABM cân tại B
=>MAB^=AMB^ (1)
Lại có : IMB^=IAB^=90* (2)
Từ 1 và 2 : +)IAM^=90*-MAB^
+)IMA^ =90*-AMB^
=>IAM^=IMA^
=>Tam giác IAM cân tại I
=>IA=iM
''∠'' là góc nhé.
a) Vì ∆ABC vuông tại A (GT)
=> ∠BAC = 90o (ĐN) (1)
Vì IM ⊥ BC (GT)
=> ∠IMB = 90o
Mà ∠BAC = 90o (Theo (1))
(Ngoặc ''}'' 2 điều trên)
=> ∠BAC = ∠IMB = 90o
Hay ∠BAI = ∠IMB = 90o (2)
Xét ∆ABI và ∆MBI có :
∠BAI = ∠IMB = 90o (Theo (2))
BI chung
BA = BM (Gt)
=> ∆ABI = ∆MBI (cạnh huyền - cạnh góc vuông)
=> AI = IM (2 cạnh tương ứng) (3)
b) Ta có : ∠BAC + ∠NAC = 180o (2 góc kề bù)
Mà ∠BAC = 90o (Theo (1))
=> 90o + ∠NAC = 180o
=> ∠NAC = 180o - 90o = 90o
Vì IM ⊥ BC (GT) => ∠IMC = 90o (ĐN)
(Ngoặc ''}'' 2 điều trên)
=> ∠NAC = ∠IMC = 90o
Hay ∠NAI = ∠IMC = 90o (4)
Lại có : ∠I1 = ∠I2 (2 góc đối đỉnh) (5)
Xét ∆ANI và ∆MCI có :
∠NAI = ∠IMC = 90o (Theo (4))
AI = MI (Theo (3))
∠I1 = ∠I2 (Theo (5))
=> ∆ANI = ∆MCI (g.c.g)
=> AN = MC (2 cạnh tương ứng)
Mà AN + BA = BN
MC + BM = BC
BA = BM (GT)
(Ngoặc ''}'' 4 điều trên)
=> BN = BC
=> ∆NBC cân tại B (ĐN)
P/s : Xin lỗi, mình chỉ làm được đến đây thôi, nghỉ nhiều quá nên mình ngu hẳn, có gì mình nghiên cứu lại sau :(.
a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E có
DB=CE
\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACB}\right)\)
Do đó: ΔMBD=ΔNCE
Suy ra: DM=EN
Xét tam giác IBM và tam giác INM ta có :
IM cạnh chung
BI = MN ( gt )
góc MIB = góc IMN ( so le trong , AB // MN )
=> tam giác IBM = tam giác INm ( c-g-c )
=> góc BMI = góc MIn ( ở vị trí so le trong )
=> IM // AC ( đpcm )