Tìm số tự nhiên x sao cho:
a) n + 3 chia hết cho n - 1
b) 4n + 3 chia hết cho 2n + 1
Mình đang cần câu trả lời gấp, bạn nào trả lời đúng và nhanh nhất mình tick cho. ( nhớ có câu trả lời nữa nha) ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
mà
nếu ( thỏa mãn )
nếu ( thỏa mãn )
vậy
b)Ta có:
4n+ 3⋮⋮ 2n+ 1.
Ta có: 2n+ 1⋮⋮ 2n+ 1.
=> 2( 2n+ 1)⋮⋮ 2n+ 1.
=> 4n+ 2⋮⋮ 2n+ 1.
Mà 4n+ 3⋮⋮ 2n+ 1.
=>( 4n+ 3)-( 4n+ 2)⋮⋮ 2n+ 1.
=> 4n+ 3- 4n- 2⋮⋮ 2n+ 1.
=> 1⋮⋮ 2n+ 1.
=> n= 1.
Vậy n= 1.
Tick cho mình nha!
Ta có: 3n+2=3n-3+2+3
Vì (n-1) nên 3(n-1) ⋮ (n-1)
Do đó(3n+2) ⋮ (n-1) khi 5 ⋮ (n-1)
=>(n-1)ϵ Ư(5)={-1;-5;1;5}
=>n ϵ {2;6} vì n-1=1=>n=2
n-1=5=>n=6
Vậy n={2;6}
ta có :số chia hết cho cả 2 và 3 là số chia hết cho 6
các số chia hết cho 6 trong khoảng từ 50 đến 200 là :
A={54;60;66;...;192;198}
A có :(198-54):6+1=25(số hạng)
vậy có 25 số chia hết cho cả 2 và 3 trong khoảng từ 50 đến 200
co 2n+1chia het cho n+1
suy ra 2 (n+1)-1 chia het cho n+1
suy ra 1 chia het cho n+1 (vi 2(n+1) chia het cho n+1)
suy ra n+1=1
suy ra n=0
mình chỉ nhớ mỗi kết quả thôi chứ quên cách giải rồi, kết quả là 102
Gọi a là số cần tìm. Ta có: a + 3 chia hết cho 5 và 7. Suy ra:
\(a\in BC\left(5,7\right)=\left\{0;35;70;105;140;...\right\}\)
Vậy a = 105.
Ta có: abc = 100 . a + 10 . b + c = n2 - 1 (1)
cbd = 100 . c + 10 . b + a = n2 - 4n + 4 (2)
Lấy (1) - (2) ta được: 99 . (a - c) = 4n - 5
=> 4n - 5 chia hết cho 99
Vì:
100 =< abc =< 999 nên:
100 =< n2 - 1 =< 999 => 101 =< n2 =< 1000 => 11 =< 31 => 39 =< 4n - 5 =< 119
Vì: 4n - 5 chia hết cho 99 nên 4n - 5 = 99 => n = 26 => abc = 675 (thỏa, mãn yêu cầu của đề bài)
P/s: dấu =< này là bé hơn hoặc bằng nhé
Ta có
\(\frac{n+2}{n-3}=\frac{\left(n-3\right)+5}{n-3}=1+\frac{5}{n-3}\)
Đẻ n+2 chia hết cho n-2
=>5 chia hết cho n-3 hay n-3 thuộc Ư(5)
=>n-3 thuộc(-5;-1;1;5)
n=(-2;2;4;8)
Nếu bài làm của mình đúng thì tick nha bạn cảm ơn.
Chúc bạn năm mới mạnh khoẻ,vui vẻ,may mắn,học giỏi nha.
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)