Tìm GTLN của biểu thức:B=\(\frac{x^2+15}{x^2+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+6x+12=(x+3)^2+3>=3
=>B<=5/3
Dấu = xảy ra khi x=-3
B=(x+1)(x+4)(x+2)(x+3)\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
đặt x^2+5x+5 =t (t>=0)
=> B=\(\left(t+1\right)\left(t-1\right)=t^2-1\) ta có: \(t^2\ge0\Rightarrow t^2-1\ge-1\Rightarrow MinB=-1\Leftrightarrow t=0\Leftrightarrow x^2+5x+5=0\Leftrightarrow\left(x^2+5x+\frac{25}{4}\right)=\frac{5}{4}\Leftrightarrow\left(x+\frac{5}{2}\right)^2=\frac{5}{4}\Rightarrow x=-\frac{5}{2}+-\frac{\sqrt{5}}{2}\)
B=(x+1)(x+2)(x+3)(x+4)T=(x+1)(x+2)(x+3)(x+4)
=(x+1)(x+4)(x+2)(x+3)=(x+1)(x+4)(x+2)(x+3)
=(x2+5x+4)(x2+5x+6)=(x2+5x+4)(x2+5x+6)
Đặt :x^2+5x+4=ax2+5x+4=a ⇒T=(a−1)(a+1)⇒T=(a−1)(a+1)
=a^2−1=(x2+5x+5)2−1≥−1=a2−1=(x2+5x+5)2−1≥−1
Vậy MinT=−1MinT=−1 khi
x2+5x+5=0⇒(x2+5x+254)−54=0x2+5x+5=0⇒(x2+5x+254)−54=0⇔(x+52)2=54⇔(x+52)2=54
\(\Rightarrow\orbr{\begin{cases}x+\frac{5}{2}=\sqrt{\frac{5}{4}}\\x+\frac{5}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{5}{4}-\frac{5}{2}}\\x=-\sqrt{\frac{5}{4}-\frac{5}{2}}\end{cases}}\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Ta có :
\(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
vì x2 \(\ge\)0 \(\Rightarrow\)x2 + 3 \(\ge\)3
\(\Rightarrow\frac{12}{x^2+3}\le4\)
\(\Rightarrow B\le1+4=5\)
Vậy GTLN của B là 5 khi x2 + 3 = 3 hay x = 0
Ta có: \(B=1+\frac{12}{x^2+3}\)
Mà \(x^2+3\ne0\in Z\)
\(\Rightarrow\)Ta có 2 trường hợp
+) x2+3 nguyên dương
\(\Rightarrow\frac{12}{x^2+3}\le12\Rightarrow B\le13\)(1)
+) x2+3 nguyên âm
\(\Rightarrow\frac{12}{x^2+3}< 0\Rightarrow B< 0\)(2)
Từ (1)(2) \(\Rightarrow B\le13\)