K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017
giải hộ mik vs
22 tháng 11 2019

Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

4 tháng 11 2018

bạn vào link này nha :

https://olm.vn/hoi-dap/detail/25403671805.html

Học tốt

Thanks

22 tháng 11 2019

Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

22 tháng 11 2019

Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

22 tháng 11 2019

A B C M I K

a) Xét tứ giác MIBK có :

MI // BC ( GT ) 

MB // IK ( vì AB // IK )

=> MIBK là hình bình hành 

=> MB = IK ( tính chất )

Mà MB =AM

=> IK = AM 

b)Cm MI đường trung bình là ra

c) Từ ý b = > AI = IC

22 tháng 11 2019

Mình nhớ là lớp 7 chưa học hình bình hành. Nếu đã được học thì tham khảo thêm cách làm bạn Việt Hoàng.

A B C M I K

Nhắc lại đề bài 1 chút: Chúng ta có: M là trung điểm AB; MI//BC và IK //AB

a) Nối M, K. 
Xét \(\Delta\)MIK và \(\Delta\)KBM có:

^IMK = ^BKM ( so le trong; MI//BC )

MI chung 

^IKM = ^BMK ( so le trong; IK//AB )

=> \(\Delta\)MIK = \(\Delta\)KBM ( g.c.g)

=> IK = BM ( cạnh tương ứng ) (1)

Mặt khác M là trung điểm AB ( giả thiết ) => AM = BM ( 2)

Từ (1); (2) => AM = IK.

b) Có: AB // IK => ^AMI = ^MIK ( so le trong )

          MI // BC => ^MIK = ^IKC ( so le trong )

=> ^AMI = ^IKC ( 3) 

Lại có : AB // IK => ^CIK = ^CAB ( đồng vị )  => ^CIK = ^IAM  (4)

Xét\(\Delta\)CIK và \(\Delta\)IAM có:

^AMI = ^IKC ( theo (3))

AM = IK ( theo a)

^IAM = ^CIK  ( theo ( 4)

=> \(\Delta\)CIK = \(\Delta\)IAM ( g.c.g)

c)  \(\Delta\)CIK = \(\Delta\)IAM  ( theo câu b)

=> AI = IC ( cạnh tương ứng )

13 tháng 12 2017

A B C M I K

a/ Xét 2 tam giác AMI và KIM, có: 

Cạnh MI chung

Góc KIM=góc AMI (2 góc so le)

Góc MIA=góc KMI (2 góc so le)

=> tam giác AMI = Tam giác KIM (Góc-cạnh-góc)

=> AM=IK (2 cạnh tương ứng)

b/ 

Xét 2 tam giác IKM và KIC, có: 

Cạnh IK chung

Góc IKC=góc KIM (2 góc so le)

Góc KIC=góc IKM (2 góc so le)

=> tam giác IKC = Tam giác IKM (Góc-cạnh-góc) (1)

Theo a) ta đã chúng minh được: tam giác AMI = Tam giác IKM (2)

Từ 1) và (2) suy ra:

Tam giác AMI=Tam giác IKC

22 tháng 11 2019

Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

3 tháng 12 2017

B A C K M I

a,Nối MK

Vì MI // BC (GT)

\(\widehat{MKB}\) = \(\widehat{IMK}\) (2 góc SLT)

Vì AB//IK (GT)

\(\widehat{BMK}\) = \(\widehat{MKI}\)( 2 góc SLT)

Xét ΔBMK và ΔIKM có:

\(\widehat{MKB}\)= \(\widehat{KMI}\)(CMT)

MK là cạnh chung

\(\widehat{BMK}\) = \(\widehat{IKM}\)(CMT)

⇒ ΔBMK = ΔIKM (g.c.g)

⇒ BM = IK (2 cạnh tương ứng)

mà BM = AM (M là trung điểm của AB)

nên IK = AM (=BM)

b, Vì AB // IK(GT)

mà M ∈ AB

⇒ AM // IK

\(\widehat{A}=\widehat{KIC}\) (2 góc đồng vị)

Vì AB // IK (GT)

\(\widehat{ABK}=\widehat{IKC}\) (2 góc đồng vị)

lại có: MI // BC(GT) ⇒ \(\widehat{AMI}=\widehat{ABK}\)(2 góc đồng vị)

Vậy \(\widehat{AMI}=\widehat{IKC}\)

Xét ΔAMI và ΔIKC có:

\(\widehat{A}=\widehat{KIC}\left(CMT\right)\)

AM=IK (CMT)

\(\widehat{AMI}=\widehat{IKC}\left(CMT\right)\)

⇒ ΔAMI = ΔIKC (g.c.g)

c, Ta có: ΔAMI = ΔIKC (CMT)

⇒ AI = IC (2 cạnh tương ứng)

3 tháng 12 2017

a) Ta có:MI // BC, IK // AB (gt)

Áp dụng tính chất đoạn chắn, ta có:

MI = BK

MB = IK

mà MA = MB (M là trung điểm của AB)

=> IK = MA (ĐPCM)

b) Ta có: ∠AMI = ∠KBM (2 góc đồng vị)

∠KBM = ∠CFE (2 góc đồng vị)

=> ∠AMI = ∠CFE

Xét ΔAMI và ΔIKC có:

IK = MA (cmt)

∠A = ∠KIC (2 góc đồng vị)

∠AMI = ∠CFE (cmt)

=> ΔAMI = ΔIKC (ĐPCM)

c) Ta có ΔAMI = ΔIKC (cmt)

=> AI = IC

=> I là trung diểm của AC

a: Xét tứ giác BMIK có

BM//IK

MI//BK

Do đó: BMIK là hình bình hành

Suy ra: BM=IK

=>AM=IK

b: Xét ΔAMI và ΔIKC có 

\(\widehat{AMI}=\widehat{IKC}\)

AM=IK

\(\widehat{A}=\widehat{KIC}\)

Do đo: ΔAMI=ΔIKC

c: Xét ΔABC có

M là trung điểm của AB

MI//BC

Do đó: I là trung điểm của AC

22 tháng 11 2019

Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath