Tìm GTLN: \(A=-a^2-5b^2-2a+4ab+10b-6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MK sửa lại đề là tìm giá trị lớn nhất nha. bn tham khảo:
BÀI LÀM.
\(F=-a^2-5b^2-2a+4ab+10b-6\)
\(=-\left(a^2-4ab+4b^2\right)-\left(2a-4b\right)-1-\left(b^2-6b+9\right)+4\)
\(=-\left(a-2b\right)^2-2\left(a-2b\right)-1-\left(b-3\right)^2+4\)
\(=-\left(a-2b-1\right)^2-\left(b-3\right)^2+4\) \(\le\)\(4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}a-2b-1=0\\b-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a=7\\b=3\end{cases}}\)
Vậy...
p/s: tham khảo nhé. mik ko chắc là đúng đâu
\(5a^2+10b^2-6ab-4a+2b+3\)
\(=\left(a^2-6ab+9b^2\right)+\left(4a^2-4a+1\right)+\left(b^2+2b+1\right)+1\)
\(=\left(a-3b\right)^2+\left(2a-1\right)^2+\left(b+1\right)^2+1>0\left(đpcm\right)\)
a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)
=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)
Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)
=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)
b,Tương tự
\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)
=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)
\(VT=a^2+4b^2+1-4ab+2a-4b+b^2-2b+1+1\)
\(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1>0\) (đpcm)
\(a^2+5b^2-4ab+2a-6b+3\)
\(=a^2-4ab+2a+5b^2-6b+3\)
\(=a^2-2a\left(2b-1\right)+5b^2-6b+3\)
\(=a^2-2.a.\frac{2b-1}{2}+\left(\frac{2b-1}{2}\right)^2+5b^2-6b-\left(\frac{2b-1}{2}\right)^2+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{\left(2b-1\right)^2}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-\frac{4b^2-4b+1}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+5a^2-6b-b^2+b-\frac{1}{4}+3\)
\(=\left(a-\frac{2b-1}{2}\right)^2+4b^2-5b+\frac{11}{4}\)
\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b\right)^2-2.2b.\frac{5}{4}+\frac{25}{16}+\frac{19}{16}\)
\(=\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\)
Vì \(\left(a-\frac{2b-1}{2}\right)^2\ge0;\left(2b-\frac{5}{4}\right)^2\ge0=>\left(a-\frac{2b-1}{2}\right)^2+\left(2b-\frac{5}{4}\right)^2+\frac{19}{16}\ge\frac{19}{16}>0\) (với mọi a,b) (đpcm)
\(a^2+5b^2-4ab+2a-6b+3\)
\(=\left(a^2-4ab+4b^2\right)+\left(2a-4b\right)+1+\left(b^2-2b+1\right)+1\)
\(=\left(a-2b\right)^2+2\left(a-2b\right)+1+\left(b^2-2b+1\right)+1\)
\(=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1\forall a;b\)
Mà \(1>0\) nên \(a^2+5b^2-4ab+2a-6b+3>0\forall a;b\)(đpcm)
Cách làm các bài dạng trên.
+Cho dễ nhìn, chuyển thành tìm GTNN của \(M=a^2+5b^2+2a-4ab-10b+6\)
+Viết lại \(M=a^2-\left(4b-2\right)a+5b^2-10b+6\)
Đây là một phương trình bậc 2 ẩn a, tham số b. M đạt GTNN khi \(a=\frac{4b-2}{2.1}=2b-1\text{ (1)}\)
(Nếu là hàm số \(y=ax^2+bx+c\text{ (}a>0\text{) thì }y\text{ đạt GTNN tại }x=-\frac{b}{2a}\))
+Viết lại \(M=5b^2-\left(4a+10\right)b+a^2+2a+6\)
Đây là một phương trình bậc 2 ẩn b, tham số a. M đạt GTNN khi \(b=\frac{4a+10}{2.5}=\frac{2a+5}{5}\Leftrightarrow2a+5=5b\text{ (2)}\)
Từ (1) và (2) suy ra, M đạt GTNN tại \(a=2b-1;\text{ }2a+5=5b\Rightarrow a=5;\text{ }b=3\)
Giờ thì làm thôi .......
\(M=-A=\left(a^2+4b^2+1-4ab+2a-4b\right)+b^2-6b+9-4\)
\(=\left(a-2b+1\right)^2+\left(b-3\right)^2-4\ge-4\)
\(\Rightarrow A\le4\)
Dấu "=" xảy ra khi \(a-2b+1=0\text{ và }b-3=0\Leftrightarrow a=5\text{ và }b=3\)
Kết luận: GTLN của A là 4.