K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔMAB=ΔMEC

b: Xét tứ giác ABEC có

M là trung điểm của AE
M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔAEG có

C là trung điểm của AG

M là trung điểm của AE

Do đó CM là đường trung bình

=>CM//GE

hay GE//BC

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó; ΔMAB=ΔMEC
b: Xét tứ giác ABEC có

M là trung điểm của BC

M là trung điểm của AE

Do đó; ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔAEG có

M là trung điểm của AE

C là trung điểm của AG

Do đó: MC là đường trung bình

=>MC//GE

hay GE//BC

28 tháng 12 2021

đề bài hỏi j

ý bn là thế ạ ?

28 tháng 12 2021

bn đó bảo vẽ hình đó bn

a) Xét ΔMAC và ΔMEB có 

MA=ME(gt)

\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔMAC=ΔMEB(c-g-c)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔBCD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔBCD cân tại C

d: Xét ΔOBC có

OM là đường cao

OM là đường trung tuyến

Do đó: ΔOBC cân tại O

Suy ra: OB=OC(1)

Xét ΔOBD có
OA là đường cao

OA là đường trung tuyến

Do đó: ΔOBD cân tại O

Suy ra: OB=OD(2)

Từ (1) và (2) suy ra OB=OC=OD

hay O cách đều ba đỉnh của ΔBDC