Chứng minh A chia hết cho 6 biết :
A = 5 + 52 + 53 + 54 + ...... + 52017 + 52018
Mình sẽ tick cho bạn có câu trả lời nhan và đúng nhất nha.
Mình cần rất gấp ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
A = (5+5^2)+(5^3+5^4)+....+(5^2017+5^2018)
= 5.(1+5)+5^3.(1+5)+....+5^2017.(1+5)
= 5.6+5^3.6+....+5^2017.6
= 6.(5+5^3+....+5^2017) chia hết cho 6
=> ĐPCM
k mk nha
\(A=5+5^2+5^3+5^4+...+5^{2017}+5^{2018}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2017}+5^{2018}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2017}\left(1+5\right)\)
\(A=5.6+5^3.6+...+5^{2017}.6\)
\(A=6\left(5+5^3+...+5^{2017}\right)\)chia hết cho 6 (đpcm)
Chúc bạn học tốt