tim cac so nguyen n sao cho P=2n -1 / n-1 la so nguyen
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là số nguyên thì \(n+1-4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
b: Để B là số nguyên thì \(2n+4-7⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)
c: Để C là số nguyên thì \(2n-2+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
d: Để D là số nguyên thì \(-n-2+7⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)
Để \(\dfrac{2n+3}{7}\) là số nguyên thì:
(2n + 3) \(⋮\) 7
\(\Rightarrow\) (2n + 3 - 7) \(⋮\) 7
\(\Rightarrow\) (2n - 4) \(⋮\) 7
\(\Rightarrow\) [2(n - 2)] \(⋮\) 7
Mà (2,7) = 1
\(\Rightarrow\) (n - 2) \(⋮\) 7
\(\Rightarrow\) n - 2 = 7k (k \(\in\) Z)
n = 7k + 2 (k \(\in\) Z)
Vậy với n = 7k + 2 (k \(\in\) Z) thì \(\dfrac{2n+3}{7}\) là số nguyên.
Chúc bn học tốt!
Tik mik nha !
\(\dfrac{2n+1}{n-5}\in Z\)
\(\Leftrightarrow2n+1⋮n-5\)
\(\Leftrightarrow2n-10+11⋮n-5\)
\(\Leftrightarrow2\left(n+5\right)+11⋮n-5\)
\(\Leftrightarrow11⋮n-5\)
\(\Leftrightarrow n-5\inƯ\left(11\right)\)
\(\Leftrightarrow n-5\in\left\{11;-11;-1;1\right\}\)
\(\Leftrightarrow n\in\left\{-6;6;16;4\right\}\)
n + 5 chia hết cho 2n - 1
=> 2 ( n + 5 ) chia hết cho 2n - 1
=> 2n + 10 chia hết cho 2n - 1
2n - 1 + 11 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 11 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư( 11 )
=> 2n - 1 thuộc { - 1 ; 1 ; 11 ; - 11 }
=> 2n thuộc { 0 ; 2 ; 12 ; - 10 }
=> n thuộc { 0 ; 1 ; 6 ; - 5 }
\(\left(x-2\right)\left(y-1\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp :
- \(\hept{\begin{cases}x-2=5\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=2\end{cases}}}\)
- \(\hept{\begin{cases}x-2=-5\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=0\end{cases}}}\)
- \(\hept{\begin{cases}x-2=1\\y-1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=6\end{cases}}}\)
- \(\hept{\begin{cases}x-2=-1\\y-1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}}}\)
a)
Ta có:
(n-1)∈Ư(15)={±1;±3;±5;±15}
=>n∈{2;0;4;-2;6;-4;16;-14}
Vậy: n∈{2;0;4;-2;6;-4;16;-14}
b)
Ta có:
2n-1 chia hết cho n-3
=>2(n-3)+5 chia hết cho n-3
=> 5 chia hết cho n-3
=> (n-3)∈Ư(5)={±1;±5}
=>n∈{4;2;8;-2}
Vậy: n∈{4;2;8;-2}
a, n-1 \(\in\)Ư(15)
\(\Rightarrow\)n - 1 \(\in\){ 1; -1 ; 3 ; -3 ; 5 ; -5 ; 15 ; -15}
\(\Rightarrow\)n \(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }
Vậy n \(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }
b, 2n-1 \(⋮\)n - 3
( n -3 ) + ( n -3 ) + 5 \(⋮\)n - 3
Vì n - 3 \(⋮\)n - 3
nên 5 \(⋮\)n - 3
\(\Rightarrow\)n - 3 \(\in\){ 1; -1 ; 5 ; -5 }
\(\Rightarrow\)n \(\in\){ 4 ; 2 ; 8 ; -2 }
Vậy n \(\in\){ 4 ; 2 ; 8 ; -2 }
~ HOK TỐT ~
\(P=\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}\)
\(=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}\)
\(=2+\frac{1}{n-1}\)
Do đó, (n-1)\(\in\)Ư(1)
\(\Rightarrow\)n- 1= -1 và n - 1=1
\(\Rightarrow\)n=0 và n=2
cam on nhieu