Chứng minh tích 3 số chẵn liên tiếp luôn chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số chẵn liên tiếp có dạng là 2k và (2k+1) với kEN
Tích của hai số này là 4k(k+1)
Ta có: k.(k+1) chia hết cho 2
Suy ra: 4k(k+1)chia hết cho 8
Vậy suy ra ĐPCM
Cố gắng lên nha bạn!
Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k thuộc Z)
Xét: 2k(2k + 2) = 4k(k + 1)
Vì 4 chia hết cho 4; k(k + 1) chia hết cho 2 (tích 2 số chẵn liên tiếp)
=> 4k(k + 1) chia hết cho 8
hay 2k(2k + 2) chia hết cho 8
Vậy: 2 số chẵn liên tiếp luôn chia hết cho 8
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
Gọi tích của 3 số chẵn liên tiếp là: 2a,2a+2,2a+4. Ta thấy:
2a.(2a+2).(2a+4)=8a.(a+1).(a+2)
Nếu a là số chẵn thì a và a+2 chia hết cho 2
a là số lẻ thì a+1 chia hết cho 2
=>a.(a+1).(a+2) chia hết cho 2
Nếu a chia 3 dư 1 thì a+2 chia hết cho 3
a chia 3 dư 2 thì a+1 chia hết cho 3
=>a.(a+1).(a+2) chia hết cho 3
Từ các lập luận trên, ta được: a.(a+1).(a+2) chia hết cho 6
Vậy a.(a+1).(a+2) chia hết cho cả 8 và 6 => chia hết cho 48
Kết luận: 2a.(2a+2).(2a+4) chia hết cho 48
=> 3 số chẵn liên tiếp chia hết cho 48
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.
Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4=> số còn lại chia hết cho 2
=> Tích 4 số tự nhiên liên tiếp chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2)
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => Tích 4 số tự nhiên liên tiếp chia hết cho 3.8
=>Tích 4 số tự nhiên liên tiếp chia hết cho 24
Một số chẵn có dạng: 2k
=> tích 2 số chắn liên tiếp là:2kx(2k+2)
=4xkxk+4xk
=4xk(k+1)chia hết cho 4
Mà kx(k+1) là tích 2 số tự nhiên liên tiếp
=>kx(k+1) chia hết cho 2
=>4xkx(k+1) chia hết cho 2x4
=>4xkx(k+1) chia hết cho 8
Vậy tích 2 số chẵn liên tiếp luôn chia hết cho 8
tui lam cau b nhe
gọi chẵn 1 là a,chẵn 2 là b
vì a,b chẵn ,liền nhau=>a chia hết cho 4,b ko chia hết cho 4 hoặc b chia hết cho 4,a ko chia hết cho 4
=>a+b ko chia hết cho 4