cho a,b,c,d là cá số thực tm đk
\(abc+bcd+cda+dab=a+b+c+d\)\(+\sqrt{2012}\)
cmr \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\ge2012\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2012}=\left(abc+bcd-a-d\right)+\left(cda+dab-c-b\right)\)
\(=\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\)
\(\Rightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\right]^2\)
\(\le\left[\left(bc-1\right)^2+\left(c+b\right)^2\right]\left[\left(a+d\right)^2+\left(ad-1\right)^2\right]\)
\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)
https://diendantoanhoc.net/topic/76281-bdt-thi-h%E1%BB%8Dc-sinh-gi%E1%BB%8Fi-t%E1%BB%89nh-l%E1%BB%9Bp-9-nam-2011-2012/
Ta có:
\(\sqrt{2x\left(x+y\right)^3}+y\sqrt{2\left(x^2+y^2\right)}\)
\(=\sqrt{\left(2x^2+2xy\right)\left(x^2+2xy+y^2\right)}+\sqrt{2}y.\sqrt{x^2+y^2}\)
\(\le\sqrt{\left(2x^2+2xy+2y^2\right)\left(x^2+2xy+y^2+x^2+y^2\right)}=2\left(x^2+xy+y^2\right)\)
\(\Rightarrow3\left(x^2+y^2\right)\le2\left(x^2+xy+y^2\right)\)
\(\Rightarrow\left(x-y\right)^2\le0\)
\(\Rightarrow x=y\)
Thế vào pt đầu:
\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
Đặt \(\sqrt{x^2+1}=t\Rightarrow t^2-\left(x+3\right)t+3x=0\)
\(\Delta=\left(x+3\right)^2-12x=\left(x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+3-\left(x-3\right)}{2}=3\\t=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\)
\(\Rightarrow...\)
2. 4 biến xét dài quá, để người khác
Ta có:
\(\sqrt{2012}=abc+bcd+cda+dab-a-b-c-d=\left(bc-1\right)\left(a+d\right)+\left(ad-1\right)\left(b+c\right)\)
\(\Leftrightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(ad-1\right)\left(b+c\right)\right]^2\)
\(\le\left[\left(bc-1\right)^2+\left(b+c\right)^2\right]\left[\left(ad-1\right)^2+\left(a+d\right)^2\right]\)
\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)
\(GT\Leftrightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(a+c\right)\left(ad-1\right)\right]^2\le\left[\left(bc-1\right)^2+\left(b+c^2\right)\right]\)
\(\left[\left(ad-1\right)^2+\left(a+d\right)^2\right]=\left(b^2+1\right)\left(c^2+1\right)\left(a^2+1\right)\left(d^2+1\right)\)
P/s: Mình không chắc đâu ! Tham khảo nha!