phân tich đa thức thành nhân tử
2x^3 - 27x^2 +18x -4
x^2 +2xy - x -y - 14
4X^4- 32x^2 + 1
a^6 + a^4 + a^2 b^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
\(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)^2-4\left(x+y\right)+3\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-4\right)+3\left(x+y-4\right)=\left(x+y+3\right)\left(x+y-4\right)\) \(P=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\) (nhóm 2 cái đầu với cuối lại với nhau, 2 cái giữa vào 1 nhóm)
Đặt \(x^2+7x+11=a\)
Ta có: \(P=\left(a-1\right)\left(a+1\right)-24\)
\(=a^2-25=\left(a-5\right)\left(a+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
d, \(4x^4-32x^2+1\)
\(=4x^4+4x^2+1-36x^2\)
\(=\left(2x+1\right)^2-\left(6x\right)^2=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)
Ta có : x3 - 7x + 6
= x3 - x - 6x + 6
= x(x2 - 1) - 6(x - 1)
= x(x + 1)(x - 1) - 6(x - 1)
= (x - 1) [x(x + 1) - 6]
= (x - 1) (x2 + x - 6) .
CÁC Ý SAU TƯƠNG TỰ
1) \(x^2+2xy+y^2-x-y-12\)
= \(\left(x+y\right)^2-\left(x+y\right)-12\)
Đặt \(x+y=z\) (đặt ẩn phụ)
\(\Rightarrow z^2-z-12\)
\(=z^2+3z-4z-12\)
\(=z\left(z+3\right)-4\left(z+3\right)\)
\(=\left(z+3\right)\left(z-4\right)\)
Khi đó: \(\left(x+y+3\right)\left(x+y-4\right)\)
#HuyenAnh
a) \(2x^3-x^2+5x+3\)
\(=2x^3-2x^2+x^2+6x-x+3\)
\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(27x^3-27x^2+18x-4\)
\(=27x^3-18x^2-9x^2+12x+6x-4\)
\(=\left(27x^3-18x^2+12x\right)-\left(9x^2-6x+4\right)\)
\(=3x\left(9x^2-6x+4\right)-\left(9x^2-6x+4\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
1. a) \(8x^3-32x=8x\left(x^2-4\right)=8x\left(x-4\right)\left(x+4\right)\)
b) \(y^3+64+\left(y+4\right)\left(y-16\right)=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)=\left(y+4\right)\left(y^2-4y+16+y-16\right)\)
\(=\left(y-4\right)\left(y^2-3y\right)=\left(y-4\right)y\left(y-3\right)\)
2) a)
\(4x^3-9x=0\)
\(\Leftrightarrow x\left(4x^2-9\right)=0\)
\(\Leftrightarrow x\left(2x+3\right)\left(2x-3\right)=0\)
<=> x=0 hoặc 2x+3=0 hoặc 2x-3=0
<=> x=0 hoặc x=-3/2 hoặc x=3/2
b) \(A=x^3-9x^2+27x-27=x^3-3.x^2.3+3.x.3^2-3^3=\left(x-3\right)^3\)
Tại x=203
A=(203-3)3=2003
Bài 1 :
a) \(8x^3-32x\)
\(=8x\left(x^2-4\right)\)
\(=8x\left(x-2\right)\left(x+2\right)\)
b) \(y^3+64+\left(y+4\right)\left(y-16\right)\)
\(=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4x+16+y-16\right)\)
\(=\left(y+4\right)\left(y^2+y-4x\right)\)
Bài 2 :
a) \(4x^3-9x=0\)
\(x\left(4x^2-9\right)=0\)
\(x\left[\left(2x\right)^2-3^2\right]=0\)
\(x\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=\frac{-3}{2}\end{cases}}}\)
P.s: ở trên dùng ngoặc vuông nhé
b) \(A=x^3-9x^2+27x-27\)
\(A=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)
\(A=\left(x-3\right)^3\)
Thay x = 203 vào biểu thức ta có :
\(A=\left(203-3\right)^3\)
\(A=200^3\)
\(A=8000000\)