Cho tam giác ABC vuông tại A (AB < AC )có đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB và AC. Gọi M là trung điểm của BC.
a)Chứng minh: ADHE là hình chữ nhật
b)Gọi F là điểm đối xứng của H qua D. Chứng minh: AF // DE
c)Chứng minh: tam giác AFM vuông
d)Kẻ DK vuông góc AF tại K Gọi I là trung điểm của AD. Chứng minh DE, KI, AM đồng quy tại một điểm .
Câu a và b cô hướng dẫn:
a) Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
b) Tứ giác FDEA là hình bình hành nên AF // DE
c) Xét tam giác AFH có AD là đường cao đồng thời trung tuyến nên nó là tam giác cân.
Vậy thì AD là tia phân giác hay \(\widehat{FAD}=\widehat{DAH}\)
Do tam giác ABC vuông tại A, M là trung điểm BC nên MA = MB = MC hay \(\widehat{BAM}=\widehat{ABM}\)
Vậy thì \(\widehat{FAD}+\widehat{BAM}=\widehat{DAH}+\widehat{ABM}=90^o\)
\(\Rightarrow\widehat{FAM}=90^o\)
Vậy tam giác AFM vuông.
c) Gọi giao điểm của AM và DE là G.
Do FA // DE mà AM vuông góc FA nên AM vuông góc DE.
Vậy thì ta có ngay AFDE là hình chữ nhật.
Suy ra KG giao AD tại trung điểm mỗi đường hay I cũng là trung điểm KG.
Vậy thì AM, DE và KI đồng quy tại điểm G.
Em cảm ơn ạ !