Chứng minh rằng:
a) ( 22002 + 22001 ) chia hết cho 6
( 31000 + 3999 ) chia hết cho 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
b) A=2+22+23+...+220
A=(2+22)+(23+24)+...+(219+220)
A=3.2+3.23+...+3.219
A=3.(2+23+25+...+219)
⇒A⋮3
phần c) làm tương tự
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
a: Ta có: \(A=2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)
b: Ta có: \(A=2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\)
Lời giải:
a.
\(\overline{abc}=100a+10b+c\)
Vì $a,b$ là số chẵn nên $100a\vdots 4; 10b\vdots b$
Mà $\overline{abc}=100a+10b+c\vdots 4$
$\Rightarrow c\vdots 4$
(đpcm)
b.
$\overline{bac}=100b+10a+c$
$=100a+10b+c+(90b-90a)=\overline{abc}+90(b-a)$
Vì $b,a$ chẵn nên $b-a$ chẵn
$\Rightarrow 90(b-a)=45.2(b-a)\vdots 4$
Kết hợp với $\overline{abc}\vdots 4$
Do đó: $\overline{bac}=\overline{abc}+90(b-a)\vdots 4$
(đpcm)
a) 22002 + 22001 = 22001(2 + 1) = 22001.3 = 22000.(2.3) = 22000.6 chia hết cho 6
b) 31000 + 3999 = 3999(3 + 1) = 3999.4 = 3998.(3.4) = 3998.12 chia hết cho 12