Help me:
Chứng minh rằng với mọi số nguyên dương x thì
\(\left(3^{x+2}-2^{x+2}+3^x-3^x\right)10^{^{ }}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x+2+3x-2x+2-2x
=3x(32+1)-2x(22+1)
=3x.10-2x.5
vì x là số nguyên dương nên: x>0 nên: 2x-1 E N
=> 3x.10-2x.5=3x.10-2x-1.10=10(3x-2x-1) chia hết cho 10 (ĐPCM)
Ta có : \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le3\left(x^3+y^3+z^3\right)\)
\(\Leftrightarrow2\left(x^3+y^3+z^3\right)-x^2\left(y+z\right)-y^2\left(x+z\right)-z^2\left(x+y\right)\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)+x^2\left(x-z\right)+y^2\left(y-x\right)+y^2\left(y-z\right)+z^2\left(z-x\right)+z^2\left(z-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)+\left(y-z\right)\left(y^2-z^2\right)+\left(z-x\right)\left(z^2-x^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)+\left(y-z\right)^2\left(y+z\right)+\left(z-x\right)^2\left(z+x\right)\ge0\) (luôn đúng vì x,y,z > 0)
Vậy bđt ban đầu được chứng minh
Câu 8 :
\(N=\left(\frac{x-1}{\left(x-1\right)^2+x}-\frac{2}{x-2}\right):\left(\frac{\left(x-1\right)^4+2}{\left(x-1\right)^3-1}-x+1\right)\)
Đặt \(x-1=a\)
\(N=\left(\frac{a}{a^2+x}-\frac{2}{a-1}\right):\left(\frac{a^4+2}{a^3-1}-a\right)\)
\(N=\frac{a\left(a-1\right)-2\left(a^2+x\right)}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a\left(a^3-1\right)}{a^3-1}\)
\(N=\frac{a^2-a-2a^2-2x}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a^4+a}{a^3-1}\)
\(N=\frac{-a^2-a-2x}{\left(a^2+x\right)\left(a-1\right)}\cdot\frac{\left(a-1\right)\left(a^2+a+1\right)}{2+a}\)
\(N=\frac{-\left(a^2+a+2x\right)\left(a^2+a+1\right)}{\left(a^2+x\right)\left(2+a\right)}\)
\(N=\frac{-\left[\left(x-1\right)^2+x-1+2x\right]\left[\left(x-1\right)^2+x-1+1\right]}{\left[\left(x-1\right)^2+x\right]\left(2+x-1\right)}\)
\(N=\frac{-\left(x^2+x\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x+1\right)}\)
\(N=\frac{-x\left(x+1\right)}{x+1}\)
\(N=-x\)( đpcm )
Câu 9 : Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2}{x+4}\cdot\left(\frac{x^2+16}{x}+8\right)+9\)
Bài làm :
\(P=\frac{x^2}{x+4}\cdot\frac{x^2+8x+16}{x}+9\)
\(P=\frac{x^2\left(x+4\right)^2}{x\left(x+4\right)}+9\)
\(P=x\left(x+4\right)+9\)
\(P=x^2+4x+9\)
\(P=\left(x+2\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-2\)