K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

trả lời nhanh giúp mình nha^^. thank các bạn nhìu

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

30 tháng 12 2021

a/  Xét △ABM và △DMC có:

AM=MD(gt)

MB=MC(gt)

^AMB=^CMD(đối đỉnh)

⇒ΔAMB=ΔDMC(cmt)(đpcm).

b/ Ta có: ΔAMB=ΔDMC(cmt)

⇒^MAB=^MDC⇒^MAB=^MDC[ hai góc ở vị trí so le trong]

Vậy: AB // CD (đpcm).

28 tháng 2 2021

em tự vẽ hình nha 

xét △AMB và △DMC có:

BM = MC

AM = MD

góc AMB = góc DMC  ( đối đỉnh )

=> △AMB = △DMC 

=> góc ABM = góc DCM và ở vị trí sole trong 

=> AB // CD 

ta có AB vuông góc với AC 

=> CD vuông góc với AC ( đpcm )

 

a: Vì ΔABC đều

nên AB=AC=BC

mà BC=CE

nên AB=AC=BC=CE

b: Xét ΔABE có 

AC là đường trung tuyến

AC=BE/2

Do đó: ΔABE vuông tại A

c: Ta có; ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

a: Xét tứ giác ABDC có 

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo AD

Do đó: ABDC là hình bình hành

Suy ra: CD//AB

b: Ta có: ABDC là hình bình hành

nên AB=CD(1)

Xét ΔBAE có 

BH là đường cao ứng với cạnh AE

BH là đường trung tuyến ứng với cạnh AE

Do đó: ΔBAE cân tại B

Suy ra: AB=BE(2)

Từ (1) và (2) suy ra BE=CD

d: Xét ΔAED có 

M là trung điểm của AD

H là trung điểm của AE

Do đó: MH là đường trung bình của ΔAED

Suy ra: MH//ED

hay ED//BC