K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

Gọi a, b, c là độ dài 3 cạnh của tam giác 

S là diện tích tam giác

x là độ dài đường cao thứ 3

Ta có: S=\(\frac{1}{2}.3^2.a=\frac{1}{2}.4^3.b=\frac{1}{2}.x.c\)

=> \(\hept{\begin{cases}a=\frac{2S}{9}\\b=\frac{2S}{64}\\c=\frac{2S}{x}\end{cases}}\)

Mà theo bất đặng thức tam giác ta có:

a-b<c<a+b\(\Rightarrow\frac{2S}{9}-\frac{2S}{64}< \frac{2S}{x}< \frac{2S}{9}+\frac{2S}{64}\)=> \(\frac{1}{9}-\frac{1}{64}< \frac{1}{x}< \frac{1}{9}+\frac{1}{64}\Rightarrow\frac{55}{576}< \frac{1}{x}< \frac{73}{576}\)

<=> 7,89<x<10,47

Vì x có độ dài là lập phương của một số tự nhiên 

=> x=8 

23 tháng 7 2017

+) Xét tam giác AMC  và tam giác ABC có : chung chiều cao hạ từ A xuống BC ; đáy MC = 1/4 BC

=> S (AMC)  = 1/4 S (ABC)

Mặt khác , xét tam giác AMC và ABC có chung đáy AC => chiều cao MH = 1/4 chiều cao BK 

Vậy MH = 1/4 BK

23 tháng 7 2017

A B K C M H

a: ha=9; hb=12; hc=16

=>hc*9=ha*16=hb*12

=>hc/16=ha/9=hb/12

=>Haitam giác này đồng dạng 

b: ha=4; hb=5; hc=6

=>ha*6=24; hb*5=25; ha*4=24

=>Hai tam giác này ko đồng dạng

9 tháng 9 2016

Bài 1:

3 4 x y z

Áp dụng đl pytago ta có:

\(\left(y+z\right)^2=3^2+4^2=9+16=25\)

=> y + z = 5

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

\(3^2=y\left(y+z\right)=5y\)

=>\(y=\frac{3^2}{5}=1,8\)

Có: y + z =5

=>z=5-y=5-1,8=3,2

Áp dụng hên thức liên quan tới đường cao:

\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)

=>\(x=\frac{12}{5}\)

2 tháng 9 2019

Bài 2:

B A C H 1cm 2cm x y

Ta có: △ABC vuông tại A và có đg cao AH

AB2 = BH.BC ( hệ thức lượng )

⇒ x2 = 1 . 3

⇒ x = \(\sqrt{1.3}=\sqrt{3}cm\)

AC2 = CH.BC

⇒ y2 = 2 . 3

⇒ y = \(\sqrt{6}\) cm

Theo mình là bằng nhau vì khi vẽ hình, bạn sẽ thấy đường cao MH là đường cao của tam giác AMC cũng là đường cao của tam giác ABC luôn. Vì vậy BK = MH

1 tháng 8 2019

cho bn link

https://lazi.vn/uploads/edu/answer/1503148899_1.JPG

27 tháng 8 2022

+) Xét tam giác AMC  và tam giác ABC có : chung chiều cao hạ từ A xuống BC ; đáy MC = 1/4 BC

=> S (AMC)  = 1/4 S (ABC)

Mặt khác , xét tam giác AMC và ABC có chung đáy AC => chiều cao MH = 1/4 chiều cao BK 

Vậy MH = 1/4 BK