K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(x2+xy+y2) +2

\(\Rightarrow\)(x+y)2+2\(\ge\)2

Vậy  : x2 + y2 + xy + 2 > 0 với mọi số thực x,y

9 tháng 12 2017

x2+y2+xy+2>0

<=>2x2+2y2+2xy+2>0

<=>(x2+2xy+y2)+x2+y2+2>0

<=>(x+y)2+x2+y2+2>0(đúng vì (x+y)2+x2+y2>=0 với mọi x;y)

9 tháng 12 2019

a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)

27 tháng 10 2018

Bạn xem lại đề nhé: Ví dụ chọn x=2, y=1 ta có: 22-4.2.1+1+2=-1<0 

17 tháng 11 2017

Ta có:

x2 – 2xy + y2 + 1

= (x2 – 2xy + y2) + 1

= (x – y)2 + 1.

(x – y)2 ≥ 0 với mọi x, y ∈ R

⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).

1 tháng 4 2022

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

x^2+4y^2+z^2-2x-6z+8y+15

=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9

=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1

=(x-1)^2+4(y+1)^2+(z-3^)2+1

Ta thấy:(x−1)^2≥0

              4(y+1)^2≥0

             (z−3)^ 2≥0

{(x−1)^24(y+1)^2(z−3)^2≥0

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0

Khét đấy hot girl !

NV
24 tháng 12 2022

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y+1+xy\right)^2\) là SCP

24 tháng 12 2022

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)

 = 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)

 =(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)

 =(x+y)2+(xy+1)2+2(x+y)(1+xy)

 =(x+y+xy+1)2

 

11 tháng 8 2017

\(x^2-2xy+y^2+1\)

\(=\left(x^2-2xy+y^2\right)+1\)

\(=\left(x-y\right)^2+1\)

vì \(\left(x-y\right)^2\ge0\Rightarrow\left(x-y\right)^2+1>0\forall x,y\)

vậy ................