K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

Không mất tính tổng quát, ta giả sử \(a\le b\le c\le d< 1\)

Xét tổng \(S=\left|d-c\right|+\left|d-b\right|+\left|d-a\right|+\left|c-b\right|+\left|c-a\right|+\left|b-a\right|\)

\(=\left(3d+c\right)-\left(b+3a\right)\)

Do \(b+3a\ge0\Rightarrow S\le3d+c\)

S = 3d + c khi a = b = 0 , khi đó d + c = 1.

Do \(d\le1\Rightarrow S=2d+\left(d+c\right)=2d+1\le2.1+1=3\)

Vậy maxS = 3 khi \(\left(a,b,c,d\right)=\left(1,0,0,0\right)\) và các hoán vị của nó.

10 tháng 12 2017

Tìm hai số biết tổng là 0,75 và tỉ số cũng là 0,75
Tìm hai số biết tổng của

15 tháng 10 2015

Giả sử abcd0

Ta có S =|a-b|+|b-c|+|c-d|+|a-c|+|a-d|+|b-d|

=> S = a – b + b – c + c – d + a – c + a – d + b – d  

=> S = 3a + b – (c + 3d)

Mà c + 3d 0 => S3a + b

Mặt khác a + b + c + d = 1 => a  1.  

Suy ra S = 3a + b = 2a + a + b  2.1 + 1 = 3

              c+3d=0

Dấu bằng xảy ra khi a+b+c+d=1

                                                    } <=>{a=1b=c=d=0 

                                       a=1

Vậy S lớn nhất bằng 3 khi trong bốn số a, b, c, d có một số bằng 1 còn ba số bằng 

8 tháng 4 2016

tl rõ rõ cía

10 tháng 4 2019

Câu hỏi của lê thị ngọc tú:Bạn tham khảo câu 2 tại đây nhé!

10 tháng 4 2019

còn cau 1 với câu 3 :(( box nào giúp t với >: 

29 tháng 3 2017

Giải:

Vì vai trò \(a,b,c,d\) bình đẳng

Giả sử \(a\ge b\ge c\ge d\) khi đó:

\(S=\left|a-b\right|+\left|a-c\right|+\left|a-d\right|+\left|b-c\right|+\left|b-d\right|+\left|c-d\right|\)

\(=\left(a-b\right)+\left(a-c\right)+\left(a-d\right)+\left(b-c\right)+\left(b-d\right)+\left(c-d\right)\)

\(=\left(3a+b\right)-\left(c+3d\right)\)

Do \(c+3d\ge0\Rightarrow S\le3a+b\)

\(S=3a+b\) khi \(c=d=0,\) lúc đó \(a+b=1\)

Do \(a\le1\) ta có \(S=2a+\left(a+b\right)=2a+1\le2.1+1\)

Hay \(S\le3\)

Vậy \(Max_S=3\) khi \(\left(a,b,c,d\right)=\left(1;0;0;0\right)\) và các hoán vị của nó

29 tháng 3 2017

Em nên nói rõ hơn giá trị tuyệt đối từng cặp ở đây là cái gì! có phải là giá trị tuyệt đối của 2 số k?

Bài 1 Tính A=\(\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot\left(\frac{1}{16}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\cdot\left(\frac{1}{121}-1\right)\)Bài 2Cho A = \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)B= \(\frac{1}{20\cdot38}+\frac{1}{21\cdot37}+...+\frac{1}{38\cdot20}\)CMR \(\frac{A}{B}\)là 1 số nguyênBài 3a) Cho S = 17+17^2+17^3+...+17^18 . Chứng minh rằng S chia hết cho 307b) Cho đa thức...
Đọc tiếp

Bài 1 

Tính A=\(\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot\left(\frac{1}{16}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\cdot\left(\frac{1}{121}-1\right)\)

Bài 2

Cho A = \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)

B= \(\frac{1}{20\cdot38}+\frac{1}{21\cdot37}+...+\frac{1}{38\cdot20}\)

CMR \(\frac{A}{B}\)là 1 số nguyên

Bài 3

a) Cho S = 17+17^2+17^3+...+17^18 . Chứng minh rằng S chia hết cho 307

b) Cho đa thức f(x)=\(a_4x^4+a_3x^3+a_2x^2+a_1x+a_0\)

Biết rằng : f(x)=f(-1);f(2)=f(-2)

Chứng minh : f(x)=f(-x) với mọi x

Cho 4 số không âm a, b, c, d thỏa mãn a+b+c+d=1. Gọi S là tổng các giá trị tuyệt đối của hiệu từng cặp số có được từ 4 số này. S có thể đạt được giá trị lớn nhất bằng bao nhiêu?

Bài 4 

Cho tam giác ABC (ab>ac), m là trung điểm của bc. Đường thẳng đi qua m vuông góc với tia phân giác của góc a tại h cắt cạnh ab, ac lần lượt tại e và f. Chứng minh

a) 2BME=ACB-B( Đây là các góc)

b) \(\frac{FE^2}{4}+AH^2=AE^2\)

c) BE=CF

1
5 tháng 2 2020

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right)\)

\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{121}\right)\)

\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{120}{121}\)

\(-A=\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot10\cdot12}{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot11\cdot11}\)

\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot10\right)\left(3\cdot4\cdot5\cdot...\cdot12\right)}{\left(2\cdot3\cdot4\cdot...\cdot11\right)\left(2\cdot3\cdot4\cdot...\cdot11\right)}\)

\(-A=\frac{1\cdot12}{11\cdot2}=\frac{6}{11}\)

\(A=-\frac{6}{11}\)

\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{37}-\frac{1}{38}\)

\(B=1-\frac{1}{38}=\frac{37}{38}\)