K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2017

Gọi a là số cần tìm

Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)

Vì a chia 2003 dư 32  suy ra a = 2003q + 32(q thuộc N)

Suy ra 2001p+23=2003q+32              

          2001p-2001q=2q+32-23

         2001(p-q)=2q+9

Suy ra 2q+9 chia hết cho 2001

Mà a nhỏ nhất thì q nhỏ nhất

Nếu 2q+9=2001 suy ra q=996(chọn)

Với q=996 suy ra a=996 x 2003+32=1995020

Vậy số cần tìm là 1995020      

8 tháng 12 2017

Gọi số cần tìm là a, a \(\in\) N*, a nhỏ nhất

Vì a : 2001 dư 23 \(\Rightarrow a=2001m+23\)    (m,n \(\in\) N*)

    a : 2003 dư 32 \(\Rightarrow a=2003n+32\)

\(\Rightarrow2001m+23=2003n+32\)

\(\Rightarrow2001m+23=2001n+2n+32\)

\(\Rightarrow2001m-2001n=2n+32-23\)

\(\Rightarrow2001\left(m-n\right)=2n+9\)

\(\Rightarrow2n+9⋮2001\)

Để a nhỏ nhất thì n nhỏ nhất \(\Rightarrow\) 2n+9 nhỏ nhất

Nếu \(2n+9=2001\Rightarrow n=996\) (chọn)

Với \(n=996\) thì \(a=2003.996+32=1995020\)

Vậy số cần tìm là 1995020.

7 tháng 12 2017

Gọi a là số cần tìm

Vì a chia 2001 dư 23 suy ra a = 2001p + 23(p thuộc N)

Vì a chia 2003 dư 32  suy ra a = 2003q + 32(q thuộc N)

Suy ra 2001p+23=2003q+32              

          2001p-2001q=2q+32-23

         2001(p-q)=2q+9

Suy ra 2q+9 chia hết cho 2001

Mà a nhỏ nhất thì q nhỏ nhất

Nếu 2q+9=2001 suy ra q=996(chọn)

Với q=996 suy ra a=996 x 2003+32=1995020

Vậy số cần tìm là 1995020      

23 tháng 10 2015

Gọi số tự nhiên cần tìm là A  

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p \(\in\) N )  

Tương tự:  A = 31q + 28 ( q \(\in\) N )  

Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23  

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ

=>p – q \(\ge\)1

 Theo giả thiết A nhỏ nhất

=> q nhỏ nhất (A = 31q + 28)                                      

=>2q = 29(p – q) – 23 nhỏ nhất                                    

 => p – q nhỏ nhất  

Do đó p – q = 1

=> 2q = 29 – 23 = 6                          

=> q = 3  

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

nho **** T_T

17 tháng 10 2015

Gọi số cần tìm là a. 

Vì a chia cho 29 dư 5 nên a có dạng : a = 29k + 5 ( k là số tự nhiên ) 

Lại có a chia 31 dư 28 nên a - 28 chia het cho 31 

=> 29k - 23 chia hết cho 31 

=> 31k -31 - 2k +8 chia hết cho 31 

=> 2k - 8 chia hết cho 31 

=> k - 4 chia hết cho 31 

Mà a là số tự nhiên nhỏ nhất nên k cũng là số nhỏ nhất . Vậy k = 4 hay a = 29.4 + 5 = 121

29 tháng 10 2015

121

                  

22 tháng 10 2016

Gọi số tự nhiên cần tìm là A 

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p \(\in\) N )

Tương tự: A = 31q + 28 ( q \(\in\) N ) 

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28) 

=>2q = 29(p – q) – 23 nhỏ nhất

=> p – q nhỏ nhất 

Do đó p – q = 1 => 2q = 29 – 23 = 6

=> q = 3 

4 tháng 12 2016

 cho số tự nhiên a,biết  rằng khi chia acho 15 thì ta được số dư gấp 8 lần thương. Ta có a=......

30 tháng 10 2016

 giả sử số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên 
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q ) 
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121 
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài

24 tháng 6 2017

Số tự nhiên A chia cho 29 dư 5 nghĩa là : A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N )

Nên :  31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q ) 
Vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 Vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121 
Thử lại :121 = 31 . 3 + 28 thỏa mãn đề bài