Điều kiện \(x\ge1\)Aps dụng BĐT AM-GM ta có
\(\sqrt{x-\frac{1}{x}}=\sqrt{1\left(x-\frac{1}{x}\right)}\le\frac{1+x-\frac{1}{x}}{2}\)
\(\sqrt{1-\frac{1}{x}}=\sqrt{\frac{1}{x}\left(x-1\right)}\le\frac{\frac{1}{x}+x-1}{2}\)
\(\Rightarrow\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\le x\)Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=1\\x-1=\frac{1}{x}\end{cases}\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}}\)