Cho tam giác đều ABC.lấy điểm M nằm bất kì từ M lần lượt hạ đường cao MH,MH vuông góc với AB,MI vuông góc với BC,MK vuông góc với AC.hãy chứng tor MH + MK + MI = AG ( AG là chiều cao của tam giác ABC )
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
14 tháng 8 2021
Ta có:
K trọng tâm của tam giác đều ABC
=>MH=1/3AG
MK=1/3AG
MI=1/3AG
=>MI+MK+MH=AG
nha bạn chúc bạn học tốt
4 tháng 9 2017
b1:
Bạn cũng có thể gộp chung thế này:
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >=
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 =
AH^2/2 + (M'H - M'A)^2/2
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH.
=> M trùng với M' và MA = M'A = M'H = MH
=> M nằm ở trung điểm AH
Em tham khảo tại đây nhé:
Câu hỏi của Nguyễn Văn Hòa - Toán lớp 7 - Học toán với OnlineMath
Ta thấy ngay MI + MJ + MK = AH (AH là chiều cao tam giác ABC)