Tim x, biet: I 2x-1 I + I 1-2x I = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x-\left|x+1\right|=-\frac{1}{2}\)
=> \(\left|x+1\right|=2x-\left(-\frac{1}{2}\right)\)
=> \(\left|x+1\right|=2x+\frac{1}{2}\)
=> \(\left[{}\begin{matrix}x+1=2x+\frac{1}{2}\\x+1=-\left(2x+\frac{1}{2}\right)\end{matrix}\right.\) => \(\left[{}\begin{matrix}x-2x=\frac{1}{2}-1\\x+1=-2x-\frac{1}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}-1x=-\frac{1}{2}\\x+2x=\left(-\frac{1}{2}\right)-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=\left(-\frac{1}{2}\right):\left(-1\right)\\3x=-\frac{3}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{1}{2}\\x=\left(-\frac{3}{2}\right):3\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{2};-\frac{1}{2}\right\}.\)
Chúc bạn học tốt!
\(2x-\left|x+1\right|=-\frac{1}{2}\)
\(\Leftrightarrow\left|x+1\right|=2x+\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2x+\frac{1}{2}\\x+1=-\left(2x+\frac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x+1=-2x-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\3x=-\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy : \(x\in\left\{\frac{1}{2},-\frac{1}{2}\right\}\)
\(\left|2x-1\right|-x=4\Leftrightarrow\left|2x-1\right|=4+x\) (1)
+)TH1: \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\) thì ph(1) trở thành
\(2x-1=4+x\Leftrightarrow x=5\) (tm)
+)TH2: \(2x-1< 0\Leftrightarrow x< \frac{1}{2}\) thì pt(1) trở thành
\(1-2x=4+x\Leftrightarrow-3x=3\Leftrightarrow x=-1\) (tm)
Vậy x={-1;5}
a: \(\Leftrightarrow2x^2+4-x^2+\dfrac{3}{2}=-3+4x^2-\dfrac{4}{3}x^2+1\)
\(\Leftrightarrow x^2+\dfrac{11}{2}=\dfrac{8}{3}x^2-2\)
\(\Leftrightarrow x^2\cdot\dfrac{-5}{3}=-\dfrac{15}{2}\)
\(\Leftrightarrow x^2=\dfrac{9}{2}\)
hay \(x\in\left\{\dfrac{3\sqrt{2}}{2};-\dfrac{3\sqrt{2}}{2}\right\}\)
b: \(\Leftrightarrow\left|x\right|-4-2+\left|x\right|-\dfrac{1}{3}\left|x\right|+5=0\)
\(\Leftrightarrow\left|x\right|\cdot\dfrac{5}{3}=1\)
hay \(x\in\left\{\dfrac{3}{5};-\dfrac{3}{5}\right\}\)
a) |2x +1| = 7
Th1: 2x + 1 = 7
<=> x = 3
Th2: 2x + 1 = -7
<=> x = -4