K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

Biểu thức A có tổng cộng 2010 số hạng

\(A=2^1+2^2+....+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{2009}\left(1+2\right)\)

\(A=2.3+2^3.3+....+2^{2009}.3=3\left(2+2^3+.....+2^{2009}\right)\) Chia hết cho 3 

Chia hết cho 7 cũng tương tự chỉ khác là giờ chúng ta nhóm 3 số hạng đặt số hạng có số mũ nhỏ nhất trong nhóm ra ngoài là ok! 

5 tháng 12 2017

\(A=2^1+2^2+2^3+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2^1\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=2^1.3+2^3.3+2^5.3+...+2^{2009}.3\)

\(A=3.\left(2^1+2^3+2^5+...+2^{2009}\right)\)\(⋮\)\(3\)

\(\Rightarrow\)\(A⋮3\)

\(A=2^1+2^2+2^3+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2^1\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=2^1.7+2^4.7+2^7.7+...+2^{2008}.7\)

\(A=7.\left(2^1+2^4+2^7+...+2^{2008}\right)\)\(⋮\)\(7\)

\(\Rightarrow\)\(A⋮7\)

27 tháng 8 2021

giúp mik nếu đúg mik sẽ tik

 

27 tháng 8 2021

giúp mik ik

 

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

25 tháng 7 2017

1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10

A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)

A= 3.( 2^1+2^3+2^5+...+2^1005)

Do 3 \(⋮\)3 => A\(⋮\)3

Ta có: A =.....

A= Ghép 3 số lại

A= 7. (2^1+ 2^4+...+2^670)

Do 7 \(⋮\)7 => A \(⋮\)7

2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi

Duyệt nhanh....

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

25 tháng 12 2020

có:A=31+32+33+...+32010(có 2010 số hạng)

chia tổngA thành 670 nhóm

A=(31+32+33)+...+(32008+32009+32010)

A=3.(1+3+32)+...+32008.(1+3+32)

A=3.13+...+32008.13

A=13.(3+...+32008)⋮13

Vậy A⋮13

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé.