K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

\(\frac{1}{27}=3^{\frac{1}{81}}\)
=> \(n=\frac{1}{81}\)

\(\frac{16}{2^n}=\frac{1}{2}=\frac{16}{32}=\frac{16}{2^5}\)

=> n = 5

32 < 2n < 128

=> 25 < 2n < 27

=> 2n = 26

=> n = 6

8 tháng 2 2020

a. 32 = 25 => n thuộc tập 1; 2; 3; 4

b. \(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)

\(\Rightarrow\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{4}+\frac{2}{3}=\frac{11}{12}\)

\(\Rightarrow x=\frac{12}{11}\)

c. p nguyên tố => \(p\ge2\) => 52p luôn có dạng A25

=> 52p+2015 chẵn

=> 20142p + q3 chẵn

Mà 20142p chẵn => q3 chẵn => q chẵn => q = 2

=> 52p + 2015 = 20142p+8

=> 52p+2007 = 20142p

2014 có mũ dạng 2p => 20142p có dạng B6

=> 52p = B6 - 2007 = ...9 (vl)

(hihi câu này hơi sợ sai)

d. \(17A=\frac{17^{19}+17}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)\(17B=\frac{17^{18}+17}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)

\(17^{19}+1>17^{18}+1\Rightarrow\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)

\(\Rightarrow17A< 17B\)

\(\Rightarrow A< B\)

9 tháng 2 2020

de thi chon hoc sinh gioi nay

10 tháng 11 2017

Không mất tính tổng quát ta giả sử

\(a\ge b\ge b\ge d\)

\(\Rightarrow\frac{1}{abcd}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{4}{a}\)

\(\Leftrightarrow\frac{1}{bcd}\ge4\)

\(\Leftrightarrow bcd\le\frac{1}{4}\)

Vậy phương trình vô nghiệm.

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

1 tháng 1 2021

Đặt bđt là (*)

Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :

\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)

\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)

Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)

Hay \(n\le2\)

Với n=2 . Thay vào (*) : ta cần CM BĐT 

\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)

Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Tương tự ta có:

\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)

Ta cần CM: 

\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)

=> đpcm

Dấu '=' xảy ra khi a=b=c

=> số nguyên dương lớn nhất : n=2( thỏa mãn)