1.Cho nửa đường tròn (O) đường kính AB , trên nửa đường tròn lấy điểm D bất kì . Dựng hình bình hành ABCD . Kẻ DM vuông với AC , BN vuông với AC (M,N thuộc AC) . Tìm vị trí của D trên nửa đường tròn (O) sao cho : tích BN x AC lớn nhất
2*.Cho nửa đt (O;R) đường kính AB. M là điểm di động trên nửa đường tròn. Tiếp tuyến tại M cắt 2 tiếp tuyến tại A và B của đường tròn lần lượt tại C và D. AM cắt BD tại I. CMR: OI vuông góc BC
3*.Cho tam giác ABC nội tiếp đường tròn (O;R) , ba đường cao AD , BE , CF của tam giác ABC cắt đường tròn (O) lần lượt tại K, N, M . Tính giá trị của biểu thức : AK/AD + BN/BE + CM/CF