K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

A B C D E 1 2

Sửa đề: Trên cạnh BC lấy điểm E sao cho BE = BA (xem lại đoạn này)

CM: Xét t/giác ABD và t/giác EBD

có: AB = BE (gt)

  \(\widehat{B_1}=\widehat{B_2}\)(gt)

 BD : chung

=> t/giác ABD = t/giác EBD (c.g.c)

b) Ta có : t/giác ABD = t/giác EBD (cmt)

=> AD = DE (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{BED}=90^0\)(2 góc t/ứng) => \(DE\perp BC\)

c) Ta có: AB = BE (gt) => B \(\in\)đường trung trực của AE

 AD = DE (cmt) => D \(\in\)đường trung trực của AE

mà B \(\ne\)D => BD là đường trung trực của AE 

10 tháng 9 2016

B A D E C

Xét \(\Delta ABD\) và \(\Delta EBD\) , ta có :

\(\widehat{BAD}=\widehat{BED}=90^0\)

\(BD\) là cạnh huyền 

 \(\widehat{ABD}=\widehat{EBD}\) ( vì \(BD\) là phân giác của \(\widehat{BAC}\))

Do đó : \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)

\(\Rightarrow AB=BE\) ( vì hai cạnh tương ứng )

 

9 tháng 12 2017

Hình vẽ sau nha bạn (à mà bn thông cảm nha đây là lần đầu tiên mk vè hình nên cái hình hới k chính xác nhưng mà bn cứ dựa vào đó nhé)

a)

Xét \(\Delta ABD\) và \(\Delta EBD\), có:

BA=BE ( gt )

\(\widehat{ABD}=\widehat{EBD}\) ( AD là tia phân giác của góc B)

BD: cạnh chung

Suy ra: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)

\(\Rightarrow\) \(\widehat{A}=\widehat{BED}=90^0\) ( 2 góc tương ứng)

Ta có: \(\widehat{BED}+\widehat{DEC}=180^0\) (kề bù)

hay \(90^0+\widehat{DEC}=180^0\)

\(\Rightarrow\) \(\widehat{DEC}=180^0-90^0=90^0\)

\(\Rightarrow\) \(DE\perp BC\)

b)

Ta có: \(\Delta ABD=\Delta EBD\left(cmt\right)\)

Suy ra: DA=DE ( hai cạnh tương ứng)

Xét \(\Delta DAF\) và \(\Delta DEC\) , có:

\(\widehat{FAD}=\widehat{ECD}=90^0\)

\(\widehat{ADF}=\widehat{EDC}\) (đđ)

DA=DE (cmt)

Suy ra:\(\Delta DAF=\Delta DEC\) (cạnh góc vuông - góc nhọn kề nó)

suy ra: DF=DC ( 2 cạnh tương ứng)

c)

Ta có: \(\widehat{FDM}=\widehat{BDE}\) (đđ)

\(\widehat{CDM}=\widehat{ADB}\) (đđ)

mà: \(\widehat{BDE}=\widehat{ADB}\left(\Delta ABD=\Delta EBD\right)\)

\(\Rightarrow\)\(\widehat{FDM}=\widehat{CDM}\)

Ta có: \(\Delta DAF=\Delta DEC\) (cmt)

Suy ra: DF=DC ( 2 cạnh tương ứng)

Xét \(\Delta FDM\) và \(\Delta CDM\),có:

DF=DC ( cmt )

\(\widehat{FDM}=\widehat{CDM}\left(cmt\right)\)

DM: cạnh chung

Suy ra: \(\Delta FDM=\Delta CDM\left(c-g-c\right)\)

Suy ra: \(\widehat{DMF}=\widehat{DMC}\) ( 2 góc tương ứng)

Ta lại có: \(\widehat{DMF}+\widehat{DMC}=180^0\)(kề bù)

Suy ra: \(\widehat{DMF}=\widehat{DMC}=\dfrac{180^0}{2}=90^0\)

Suy ra: \(BM\perp FC\) hay \(BD\perp FC\)
A B C E D F

Đề bài yêu cầu gì?