K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)

\(\Leftrightarrow x^{2010}+x^{2012}-2x^{2011}+y^{2010}+y^{2012}-2y^{2011}=0\)

\(\Leftrightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)

\(x^{2010};y^{2010}>0\Leftrightarrow x=y=1.\Rightarrow x^{2016}+y^{2016}=2\)

\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)

\(\Leftrightarrow x^{2010}+x^{2012}-2x^{2011}+y^{2010}+y^{2012}-2y^{2011}=0\)

\(\Leftrightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)

\(x^{2010};y^{2010}>0\Leftrightarrow x=y=1.\Rightarrow x^{2016}+y^{2016}=2\)

...................................................................................................................

2 tháng 1 2016

\(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}=1\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=1,63205^2\Rightarrow C+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)=1.63205^2\)
\(\Rightarrow C+2=1.63205^2\Rightarrow C=1.63205^2-2\)

2 tháng 1 2016

xin lỗi mình mới học lớp 6

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

7 tháng 11 2018

thay z = -(x+y) , y = -(z+x),... vao

=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0